Acknowledgement
We thank W.A. Fonzi, M. Whiteway, and G.R. Fink for providing the C. albicans strains and plasmids. This study was supported by the Research Fellowship of the BK21 plus project.
References
- Ramasamy R, Yan SF, Schmidt AM. 2012. Advanced glycation endproducts: from precursors to RAGE: round and round we go. Amino Acids 42: 1151-1161. https://doi.org/10.1007/s00726-010-0773-2
- Szent-Gyorgyi A, Együd LG, McLaughlin JA. 1967. Keto-aldehydes and cell division. Science 155: 539-541. https://doi.org/10.1126/science.155.3762.539
- Lee C, Yim MB, Chock PB, Yim H-S, Kang S-O. 1998. Oxidation-reduction properties of methylglyoxal-modified protein in relation to free radical generation. J. Biol. Chem. 273: 25272-25278. https://doi.org/10.1074/jbc.273.39.25272
- Szent-Gyorgyi A, McLaughlin JA. 1975. Interaction of glyoxal and methylglyoxal with biogenic amines. Proc. Natl. Acad. Sci. USA 72: 1610-1611. https://doi.org/10.1073/pnas.72.4.1610
- Yim H-S, Kang S-O, Hah Y-C, Chock PB, Yim MB. 1995. Free radicals generated during the glycation reaction of amino acids by methylglyoxal. A model study of protein-cross-linked free radicals. J. Biol. Chem. 270: 28228-28233. https://doi.org/10.1074/jbc.270.47.28228
- Song F, Schmidt AM. 2012. Glycation and insulin resistance: novel mechanisms and unique targets? Arterioscler. Thromb. Vasc. Biol. 32: 1760-1765. https://doi.org/10.1161/ATVBAHA.111.241877
- Kang Y, Edwards LG, Thornalley PJ. 1996. Effect of methylglyoxal on human leukaemia 60 cell growth: modification of DNA G1 growth arrest and induction of apoptosis. Leuk. Res. 20: 397-405. https://doi.org/10.1016/0145-2126(95)00162-X
- Takatsume Y, Izawa S, Inoue Y. 2006. Methylglyoxal as a signal initiator for activation of the stress-activated protein kinase cascade in the fission yeast Schizosaccharomyces pombe. J. Biol. Chem. 281: 9086-9092. https://doi.org/10.1074/jbc.M511037200
- Choi C-H, Park S-J, Jeong S-Y, Yim H-S, Kang S-O. 2008. Methylglyoxal accumulation by glutathione depletion leads to cell cycle arrest in Dictyostelium. Mol. Microbiol. 70: 1293-1304. https://doi.org/10.1111/j.1365-2958.2008.06497.x
- Vander Jagt DL, Hunsaker LA. 2003. Methylglyoxal metabolism and diabetic complications: roles of aldose reductase, glyoxalase-I, betaine aldehyde dehydrogenase and 2-oxoaldehyde dehydrogenase. Chem. Biol. Interact. 143-144: 341-351. https://doi.org/10.1016/S0009-2797(02)00212-0
- Kwak M-K, Ku M, Kang S-O. 2014. NAD+-linked alcohol dehydrogenase 1 regulates methylglyoxal concentration in Candida albicans. FEBS Lett. 588: 1144-1153. https://doi.org/10.1016/j.febslet.2014.02.042
- Kwak M-K, Ku M, Kang S-O. 2018. Inducible NAD (H)-linked methylglyoxal oxidoreductase regulates cellular methylglyoxal and pyruvate through enhanced activities of alcohol dehydrogenase and methylglyoxal-oxidizing enzymes in glutathione-depleted Candida albicans. Biochim. Biophys. Acta 1862: 18-39. https://doi.org/10.1016/j.bbagen.2017.10.003
- Aguirre J, Rios-Momberg M, Hewitt D, Hansberg W. 2005. Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol. 13: 111-118. https://doi.org/10.1016/j.tim.2005.01.007
- Yu S, Qin W, Zhuang G, Zhang X, Chen G, Liu W. 2009. Monitoring oxidative stress and DNA damage induced by heavy metals in yeast expressing a redox-sensitive green fluorescent protein. Curr. Microbiol. 58: 504-510. https://doi.org/10.1007/s00284-008-9354-y
- Emri T, Pocsi I, Szentirmai A. 1997. Glutathione metabolism and protection against oxidative stress caused by peroxides in Penicillium chrysogenum. Free Radic. Biol. Med. 23: 809-814. https://doi.org/10.1016/S0891-5849(97)00065-8
- Westwater J, McLaren NF, Dormer UH, Jamieson DJ. 2002. The adaptive response of Saccharomyces cerevisiae to mercury exposure. Yeast 19: 233-239. https://doi.org/10.1002/yea.835
- Dantas Ada S, Day A, Ikeh M, Kos I, Achan B, Quinn J. 2015. Oxidative stress responses in the human fungal pathogen, Candida albicans. Biomolecules 5: 142-165. https://doi.org/10.3390/biom5010142
- Ku, M., Baek Y-U, Kwak M-K, Kang S-O. 2017. Candida albicans glutathione reductase downregulates Efg1-mediated cyclic AMP/protein kinase A pathway and leads to defective hyphal growth and virulence upon decreased cellular methylglyoxal content accompanied by activating alcohol dehydrogenase and glycolytic enzymes. Biochim. Biophys. Acta 1861: 772-788. https://doi.org/10.1016/j.bbagen.2016.10.010
- Kwak MK, Song SH, Ku M, Kang SO. 2015. Candida albicans erythroascorbate peroxidase regulates intracellular methylglyoxal and reactive oxygen species independently of D-erythroascorbic acid. FEBS Lett. 589: 1863-1871. https://doi.org/10.1016/j.febslet.2015.04.050
- Shin Y, Lee S, Ku M, Kwak M-K, Kang S-O. 2017. Cytochrome c peroxidase regulates intracellular reactive oxygen species and methylglyoxal via enzyme activities of erythroascorbate peroxidase and glutathione-related enzymes in Candida albicans. Int. J. Biochem. Cell Biol. 92: 183-201. https://doi.org/10.1016/j.biocel.2017.10.004
- Baek Y-U, Kim Y-R, Yim H-S, Kang S-O. 2004. Disruption of gamma-glutamylcysteine synthetase results in absolute glutathione auxotrophy and apoptosis in Candida albicans. FEBS Lett. 556: 47-52. https://doi.org/10.1016/S0014-5793(03)01363-2
- Sherman F. 2002. Getting started with yeast. Methods Enzymol. 350: 3-41. https://doi.org/10.1016/S0076-6879(02)50954-X
- Feng Q, Summers E, Guo B, Fink G. 1999. Ras signaling is required for serum-induced hyphal differentiation in Candida albicans. J. Bacteriol. 181: 6339-6346. https://doi.org/10.1128/jb.181.20.6339-6346.1999
- Hwang C-S, Oh J-H, Huh W-K, Yim H-S, Kang S-O. 2003. Ssn6, an important factor of morphological conversion and virulence in Candida albicans. Mol. Microbiol. 47: 1029-1043. https://doi.org/10.1046/j.1365-2958.2003.03353.x
- Fonzi WA, Irwin MY. 1993. Isogenic strain construction and gene mapping in Candida albicans. Genetics 134: 717-728. https://doi.org/10.1093/genetics/134.3.717
- Pailla K, Blonde-Cynober F, Aussel C, De Bandt JP, Cynober L. 2000. Branched-chain keto-acids and pyruvate in blood: measurement by HPLC with fluorimetric detection and changes in older subjects. Clin. Chem. 46: 848-853. https://doi.org/10.1093/clinchem/46.6.848
- Biswas S, Ray M, Misra S, Dutta DP, Ray S. 1997. Selective inhibition of mitochondrial respiration and glycolysis in human leukaemic leucocytes by methylglyoxal. Biochem. J. 323: 343-348. https://doi.org/10.1042/bj3230343
- Huh W-K, Lee B-H, Kim S-T, Kim Y-R, Rhie G-E, Baek Y-W, et al. 1998. D-Erythroascorbic acid is an important antioxidant molecule in Saccharomyces cerevisiae. Mol. Microbiol. 30: 895-903. https://doi.org/10.1046/j.1365-2958.1998.01133.x
- Pogolotti ALJ, Santi DV. 1982. High-pressure liquid chromatography--ultraviolet analysis of intracellular nucleotides. Anal. Biochem. 126: 335-345. https://doi.org/10.1016/0003-2697(82)90524-3
- Newton GL, Fahey RC. 1995. Determination of biothiols by bromobimane labeling and high-performance liquid chromatography. Methods Enzymol. 251: 148-166. https://doi.org/10.1016/0076-6879(95)51118-0
- Benov L, Sztejnberg L, Fridovich I. 1998. Critical evaluation ofthe use of hydroethidine as a measure of superoxide anionradical. Free Radic. Biol. Med. 25: 826-831. https://doi.org/10.1016/S0891-5849(98)00163-4
- Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6
- Carlberg I, Mannervik B. 1985. Glutathione reductase. Methods Enzymol. 113: 484-490. https://doi.org/10.1016/S0076-6879(85)13062-4
- Nakano Y, Asada K. 1987. Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol. 28: 131-140.
- Yonetani T, Ray GS. 1966. Studies on cytochrome c peroxidase.3. Kinetics of the peroxidatic oxidation of ferrocytochrome c catalyzed by cytochrome c peroxidase. J. Biol. Chem. 241: 700-706. https://doi.org/10.1016/S0021-9258(18)96895-X
- Matthis AL, Erman JE. 1995. Cytochrome c peroxidase-catalyzed oxidation of yeast iso-1 ferrocytochrome c by hydrogen peroxide. Ionic strength dependence of the steady-state parameters. Biochemistry 34: 9985-9990. https://doi.org/10.1021/bi00031a021
- de Mendez I, Young KRJ, Bignon J, Lambre CR. 1991. Biochemical characteristics of alveolar macrophage-specific peroxidase activities in the rat. Arch. Biochem. Biophys. 289: 319-323. https://doi.org/10.1016/0003-9861(91)90417-H
- Park S-J, Kwak M-K, Kang S-O. 2017. Schiff bases of putrescine with methylglyoxal protect from cellular damage caused by accumulation of methylglyoxal and reactive oxygen species in Dictyostelium discoideum. Int. J. Biochem. Cell Biol. 86: 54-66. https://doi.org/10.1016/j.biocel.2017.03.011
- Ku M, Baek Y-U, Kwak M-K, Kang S-O. 2017. Candida albicans glutathione reductase downregulates Efg1-mediated cyclic AMP/protein kinase A pathway and leads to defective hyphal growth and virulence upon decreased cellular methylglyoxal content accompanied by activating alcohol dehydrogenase and glycolytic enzymes. Biochim. Biophys. Acta Gen. Subj. 1861: 772-788. https://doi.org/10.1016/j.bbagen.2016.10.010
- Ayer A, Tan SX, Grant CM, Meyer AJ, Dawes IW, Perrone GG. 2010. The critical role of glutathione in maintenance of the mitochondrial genome. Free Radic. Biol. Med. 49: 1956-1968. https://doi.org/10.1016/j.freeradbiomed.2010.09.023
- Kim J-S, Seo J-H, Kang S-O. 2014. Glutathione initiates the development of Dictyostelium discoideum through the regulation of YakA. Biochim. Biophys. Acta 1843: 664-674. https://doi.org/10.1016/j.bbamcr.2013.12.014
- Huh W-K, Song Y-B, Lee Y-S, Ha C-W, Kim S-T, Kang S-O. 2008. D-Erythroascorbic acid activates cyanide-resistant respiration in Candida albicans. Biochem. Biophys. Res. Commun. 369: 401-406. https://doi.org/10.1016/j.bbrc.2008.02.029
- Huh W-K, Kim S-T, Kim H, Jeong G, Kang S-O. 2001. Deficiency of D-erythroascorbic acid attenuates hyphal growth and virulence of Candida albicans. Infect. Immun. 69: 3939-3946. https://doi.org/10.1128/IAI.69.6.3939-3946.2001
- Rizhsky L, Hallak-Herr E, Van Breusegem F, Rachmilevitch S, Barr JE, Rodermel S, et al. 2002. Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase. Plant J. 32: 329-342. https://doi.org/10.1046/j.1365-313X.2002.01427.x
- Penning TM. 2015. The aldo-keto reductases (AKRs): overview. Chem. Biol. Interact. 234: 236-246. https://doi.org/10.1016/j.cbi.2014.09.024
- Garay-Arroyo A, Covarrubias AA. 1999. Three genes whose expression is induced by stress in Saccharomyces cerevisiae. Yeast 15: 879-892. https://doi.org/10.1002/(SICI)1097-0061(199907)15:10A<879::AID-YEA428>3.0.CO;2-Q
- Hagen TM, Aw TY, Jones DP. 1988. Glutathione uptake and protection against oxidative injury in isolated kidney cells. Kidney Int. 34: 74-81. https://doi.org/10.1038/ki.1988.147
- Izawa S, Inoue Y, Kimura A. 1995. Oxidative stress response in yeast: effect of glutathione on adaptation to hydrogen peroxide stress in Saccharomyces cerevisiae. FEBS Lett. 368: 73-76. https://doi.org/10.1016/0014-5793(95)00603-7
- Kim B-J, Choi C-H, Lee C-H, Jeong S-Y, Kim J-S, Kim B-Y, et al. 2005. Glutathione is required for growth and prespore cell differentiation in Dictyostelium. Dev. Biol. 284: 387-398. https://doi.org/10.1016/j.ydbio.2005.05.034
- Choi C-H, Park S-J, Jeong S-Y, Yim H-S, S.-O. K. 2008. Methylglyoxal accumulation by glutathione dpletion leads to cell cycle arrest in Dictyostelium. Mol. Microbiol. 70: 1293-1304. https://doi.org/10.1111/j.1365-2958.2008.06497.x
- Kwak MK, Lee MH, Park SJ, Shin SM, Liu R, Kang SO. 2016. Polyamines regulate cell growth and cellular methylglyoxal in highglucose medium independently of intracellular glutathione. FEBS Lett. 590: 739-749. https://doi.org/10.1002/1873-3468.12102
- Saikusa T, Rhee H-i, Watanabe K, Murata K, Kimura A. 1987. Metabolism of 2-oxoaldehydes in bacteria: purification and characterization of methylglyoxal reductase from Escherichia coli. Agric. Biol. Chem. 51: 1893-1899. https://doi.org/10.1271/bbb1961.51.1893
- de Arriba SG, Stuchbury G, Yarin J, Burnell J, Loske C, Munch G. 2007. Methylglyoxal impairs glucose metabolism and leads to energy depletion in neuronal cells--protection by carbonyl scavengers. Neurobiol. Aging 28: 1044-1050. https://doi.org/10.1016/j.neurobiolaging.2006.05.007
- Wu C, Amrani N, Jacobson A, Sachs MS. 2007. Translation initiation: extract systems and molecular genetics. 429: 203-225
- Ciriolo MR, Palamara AT, Incerpi S, Lafavia E, Bue MC, De Vito P, et al. 1997. Loss of GSH, oxidative stress, and decrease of intracellular pH as sequential steps in viral infection. J. Biol. Chem. 272: 2700-2708. https://doi.org/10.1074/jbc.272.5.2700
- Khan A, Ahmad A, Ahmad Khan L, Padoa CJ, van Vuuren S, Manzoor N. 2015. Effect of two monoterpene phenols on antioxidant defense system in Candida albicans. Microb. Pathog. 80: 50-56. https://doi.org/10.1016/j.micpath.2015.02.004
- Jiang H, English AM. 2006. Phenotypic analysis of the ccp1Delta and ccp1Delta-ccp1W191F mutant strains of Saccharomyces cerevisiae indicates that cytochrome c peroxidase functions in oxidative-stress signaling. J. Inorg. Biochem. 100: 1996-2008. https://doi.org/10.1016/j.jinorgbio.2006.07.017
- Kwak M-K, Song S-H, Ku M, Kang S-O. 2015. Candida albicans erythroascorbate peroxidase regulates intracellular methylglyoxal and reactive oxygen species independently of D-erythroascorbic acid. FEBS Lett. 89: 1863-1871.
- Hwang C-S, Baek Y-U, Yim H-S, Kang S-O. 2003. Protective roles of mitochondrial manganese-containing superoxide dismutase against various stresses in Candida albicans. Yeast 20: 929-941. https://doi.org/10.1002/yea.1004
- Spickett CM, Smirnoff N, Pitt AR. 2000. The biosynthesis of erythroascorbate in Saccharomyces cerevisiae and its role as an antioxidant. Free Radic. Biol. Med. 28: 183-192. https://doi.org/10.1016/S0891-5849(99)00214-2
- Ashraf M. 2009. Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol. Adv. 27: 84-93. https://doi.org/10.1016/j.biotechadv.2008.09.003
- Kitajima S. 2008. Hydrogen peroxide-mediated inactivation of two chloroplastic peroxidases, ascorbate peroxidase and 2-cys peroxiredoxin. Photochem. Photobiol. 84: 1404-1409. https://doi.org/10.1111/j.1751-1097.2008.00452.x
- Pócsi I, Prade RA, Penninckx MJ. 2004. Glutathione, altruistic metabolite in fungi. Adv. Microb. Physiol. 49: 1-76. https://doi.org/10.1016/S0065-2911(04)49001-8
- Banerjee D, Koll A, Filarowski A, Bhattacharyya SP, Mukherjee S. 2004. Interaction between methyl glyoxal and ascorbic acid: experimental and theoretical aspects. Spectrochim. Acta A Mol. Biomol. Spectrosc. 60: 1523-1526. https://doi.org/10.1016/j.saa.2003.08.022
- Thornalley PJ, Langborg A, Minhas HS. 1999. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem. J. 344: 109-116. https://doi.org/10.1042/0264-6021:3440109
- Thornalley PJ. 2008. Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems - role in ageing and disease. Drug Metabol. Drug Interact. 23: 125-150. https://doi.org/10.1515/DMDI.2008.23.1-2.125