DOI QR코드

DOI QR Code

4,4'-Diaponeurosporene from Lactobacillus plantarum subsp. plantarum KCCP11226: Low Temperature Stress-Induced Production Enhancement and In Vitro Antioxidant Activity

  • Kim, Mibang (Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University) ;
  • Jung, Dong-Hyun (Bacteria Research Team, Nakdonggang National Institute of Biological Resources) ;
  • Seo, Dong-Ho (Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University) ;
  • Park, Young-Seo (Department of Food Science and Biotechnology, Gachon University) ;
  • Seo, Myung-Ji (Department of Bioengineering and Nano-Bioengineering, Graduate School of Incheon National University)
  • Received : 2020.10.12
  • Accepted : 2020.11.02
  • Published : 2021.01.28

Abstract

Carotenoids, which have biologically beneficial effects and occur naturally in microorganisms and plants, are pigments widely applied in the food, cosmetics and pharmaceutical industries. The compound 4,4'-diaponeurosporene is a C30 carotenoid produced by some Lactobacillus species, and Lactobacillus plantarum is the main species producing it. In this study, the antioxidant activity of 4,4'-diaponeurosporene extracted from L. plantarum subsp. plantarum KCCP11226 was examined. Maximum carotenoid content (0.74 ± 0.2 at A470) was obtained at a relatively low temperature (20℃). The DPPH radical scavenging ability of 4,4'-diaponeurosporene (1 mM) was approximately 1.7-fold higher than that of butylated hydroxytoluene (BHT), a well-known antioxidant food additive. In addition, the ABTS radical scavenging ability was shown to be 2.3- to 7.5-fold higher than that of BHT at the range of concentration from 0.25 mM to 1 mM. The FRAP analysis confirmed that 4,4'-diaponeurosporene (0.25 mM) was able to reduce Fe3+ by 8.0-fold higher than that of BHT. Meanwhile, 4,4'-diaponeurosporene has been confirmed to be highly resistant to various external stresses (acid/bile, high temperature, and lysozyme conditions). In conclusion, L. plantarum subsp. plantarum KCCP11226, which produces 4,4'-diaponeurosporene as a functional antioxidant, may be a potentially useful strain for the development of functional probiotic industries.

Keywords

References

  1. Mussagy CU, Winterburn J, Santos-Ebinuma VC, Pereira JFB. 2019. Production and extraction of carotenoids produced by microorganisms. Appl. Microbiol. Biotechnol. 103: 1095-1114. https://doi.org/10.1007/s00253-018-9557-5
  2. Sen T, Barrow CJ, Deshmukh SK. 2019. Microbial pigments in the food industry-Challenges and the way forward. Front. Nutr. 6: 7. https://doi.org/10.3389/fnut.2019.00007
  3. Garrido-Fernandez J, Maldonado-Barragan A, Caballero-Guerrero B, Hornero-Mendez D, Ruiz-Barba JL. 2010. Carotenoid production in Lactobacillus plantarum. Int. J. Food Microbiol. 140: 34-39. https://doi.org/10.1016/j.ijfoodmicro.2010.02.015
  4. Siezen RJ, van Hylckama Vlieg JE. 2011. Genomic diversity and versatility of Lactobacillus plantarum, a natural metabolic engineer. Cell. Fact. 10: S3. https://doi.org/10.1186/1475-2859-10-S1-S3
  5. Zago M, Fornasari ME, Carminati D, Burns P, Suarez V, Vinderola G, et al. 2011. Characterization and probiotic potential of Lactobacillus plantarum strains isolated from cheeses. Food Microbiol. 28: 1033-1040. https://doi.org/10.1016/j.fm.2011.02.009
  6. Lee PC, Schmidt-Dannert C. 2002. Metabolic engineering towards biotechnological production of carotenoids in microorganisms. Appl. Microbiol. Biotechnol. 60: 1-11. https://doi.org/10.1007/s00253-002-1101-x
  7. Turpin W, Renaud C, Avallone S, Hammoumi A, Guyot J-P, Humblot C. 2016. PCR of crtNM combined with analytical biochemistry: An efficient way to identify carotenoid producing lactic acid bacteria. Syst. Appl. Microbiol. 39: 115-121. https://doi.org/10.1016/j.syapm.2015.12.003
  8. Kim M, Seo D-H, Park Y-S, Cha I-T, Seo M-J. 2019. Isolation of Lactobacillus plantarum subsp. plantarum producing C30 carotenoid 4,4'-diaponeurosporene and the assessment of its antioxidant activity. J. Microbiol. Biotechnol. 29: 1925-1930. https://doi.org/10.4014/jmb.1909.09007
  9. Kim M, Jung D-H, Seo D-H, Chung W-H, Seo M-J. 2020. Genome analysis of Lactobacillus plantarum subsp. plantarum KCCP11226 reveals a well-conserved C30 carotenoid biosynthetic pathway. 3 Biotech. 10: 450.
  10. Sachindra NM, Sato E, Maeda H, Hosokawa M, Niwano Y, Kohno M, et al. 2007. Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites. J. Agric. Food Chem. 55: 8516-8522. https://doi.org/10.1021/jf071848a
  11. Zhang Y, Fang H, Xie Q, Sun J, Liu R, Hong Z, et al. 2014. Comparative evaluation of the radical-scavenging activities of fucoxanthin and its stereoisomers. Molecules 19: 2100-2113. https://doi.org/10.3390/molecules19022100
  12. Bergamini CM, Gambetti S, Dondi A, Cervellati C. 2004. Oxygen, reactive oxygen species and tissue damage. Curr. Pharm. Design 10: 1611-1626. https://doi.org/10.2174/1381612043384664
  13. Young AJ, Lowe GM. 2018. Carotenoids-antioxidant properties. Antioxidants 7: 28. https://doi.org/10.3390/antiox7020028
  14. Hagi T, Kobayashi M, Kawamoto S, Shima J, Nomura M. 2013. Expression of novel carotenoid biosynthesis genes from Enterococcus gilvus improves the multistress tolerance of Lactococcus lactis. J. Appl. Microbiol. 114: 1763-1771. https://doi.org/10.1111/jam.12182
  15. Steiger S, Perez‐Fons L, Fraser P, Sandmann G. 2012. Biosynthesis of a novel C30 carotenoid in Bacillus firmus isolates. J. Appl. Microbiol. 113: 888-895. https://doi.org/10.1111/j.1365-2672.2012.05377.x
  16. Young AJ, Lowe GM. 2001. Antioxidant and prooxidant properties of carotenoids. Arch. Biochem. Biophys. 385: 20-27. https://doi.org/10.1006/abbi.2000.2149
  17. Ekmekci H, Aslim B, Ozturk S. 2009. Characterization of vaginal lactobacilli coaggregation ability with Escherichia coli. Microbiol. Immunol. 53: 59-65. https://doi.org/10.1111/j.1348-0421.2009.00115.x
  18. Kim SH, Kim MS, Lee BY, Lee PC. 2016. Generation of structurally novel short carotenoids and study of their biological activity. Sci. Rep. 6: 21987. https://doi.org/10.1038/srep21987
  19. Chae HS, Kim K-H, Kim SC, Lee PC. 2010. Strain-dependent carotenoid productions in metabolically engineered Escherichia coli. Appl. Biochem. Biotechnol. 162: 2333-2344. https://doi.org/10.1007/s12010-010-9006-0
  20. Wieland B, Feil C, Gloria-Maercker E, Thumm G, Lechner M, Bravo J-M, et al. 1994. Genetic and biochemical analyses of the biosynthesis of the yellow carotenoid 4,4'-diaponeurosporene of Staphylococcus aureus. J. Bacteriol. 176: 7719-7726. https://doi.org/10.1128/jb.176.24.7719-7726.1994
  21. Yang J, Li Y, Zhang L, Fan M, Wei X. 2017. Response surface design for accumulation of selenium by different lactic acid bacteria. 3 Biotech. 7: 52.
  22. Han Q, Kong B, Chen Q, Sun F, Zhang H. 2017. In vitro comparison of probiotic properties of lactic acid bacteria isolated from Harbin dry sausages and selected probiotics. J. Funct. Food 32: 391-400. https://doi.org/10.1016/j.jff.2017.03.020
  23. Tulumoglu S, Yuksekdag ZN, Beyatli Y, Simsek O, Cinar B, Yasar E. 2013. Probiotic properties of lactobacilli species isolated from children's feces. Anaerobe 24: 36-42. https://doi.org/10.1016/j.anaerobe.2013.09.006
  24. Garcia-Cayuela T, Korany AM, Bustos I, de Cadiñanos LPG, Requena T, Pelaez C, et al. 2014. Adhesion abilities of dairy Lactobacillus plantarum strains showing an aggregation phenotype. Food Res. 57: 44-50. https://doi.org/10.1016/j.foodres.2014.01.010
  25. Hu P-L, Yuan Y-H, Yue T-L, Guo C-F. 2018. A new method for the in vitro determination of the bile tolerance of potentially probiotic lactobacilli. Appl. Microbiol. Biotechnol. 102: 1903-1910. https://doi.org/10.1007/s00253-018-8742-x
  26. Frengova GI, Beshkova DM. 2009. Carotenoids from Rhodotorula and Phaffia: yeasts of biotechnological importance. J. Ind. Microbiol. Biotechnol. 36: 163-180. https://doi.org/10.1007/s10295-008-0492-9
  27. Simpson KL, Nakayama T, Chichester C. 1964. Biosynthesis of yeast carotenoids. J. Bacteriol. 88: 1688-1694. https://doi.org/10.1128/jb.88.6.1688-1694.1964
  28. Polulyakh OV, Podoprigora OI, Eliseev SA, Ershov YV, Bykhovskii VY, Dmitrovskii AA. 1992. Biosynthesis of torulene and torularhodin in the yeast Phaffia rhodozyma. Appl. Biochem. Microbiol. 27: 541-545.
  29. Bhosale P. 2004. Environmental and cultural stimulants in the production of carotenoids from microorganisms. Appl. Microbial. Biotechnol. 63: 351-361. https://doi.org/10.1007/s00253-003-1441-1
  30. Roginsky V, Lissi EA. 2005. Review of methods to determine chain-breaking antioxidant activity in food. Food Chem. 92: 235-254. https://doi.org/10.1016/j.foodchem.2004.08.004
  31. Mendez-Robles MD, Permady HH, Jaramillo-Flores ME, Lugo-Cervantes EC, Cardador-Martinez A, Canales-Aguirre AA, et al. 2006. C-26 and C-30 Apocarotenoids from seeds of Ditaxis heterantha with antioxidant activity and protection against DNA oxidative damage. J. Nat. Prod. 69: 1140-1144. https://doi.org/10.1021/np050489f
  32. Hinneburg I, Dorman HD, Hiltunen R. 2006. Antioxidant activities of extracts from selected culinary herbs and spices. Food Chem. 97: 122-129. https://doi.org/10.1016/j.foodchem.2005.03.028
  33. Muller L, Frohlich K, Bohm V. 2011. Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical scavenging assay. Food Chem. 129: 139-148. https://doi.org/10.1016/j.foodchem.2011.04.045