References
- Mussagy CU, Winterburn J, Santos-Ebinuma VC, Pereira JFB. 2019. Production and extraction of carotenoids produced by microorganisms. Appl. Microbiol. Biotechnol. 103: 1095-1114. https://doi.org/10.1007/s00253-018-9557-5
- Sen T, Barrow CJ, Deshmukh SK. 2019. Microbial pigments in the food industry-Challenges and the way forward. Front. Nutr. 6: 7. https://doi.org/10.3389/fnut.2019.00007
- Garrido-Fernandez J, Maldonado-Barragan A, Caballero-Guerrero B, Hornero-Mendez D, Ruiz-Barba JL. 2010. Carotenoid production in Lactobacillus plantarum. Int. J. Food Microbiol. 140: 34-39. https://doi.org/10.1016/j.ijfoodmicro.2010.02.015
- Siezen RJ, van Hylckama Vlieg JE. 2011. Genomic diversity and versatility of Lactobacillus plantarum, a natural metabolic engineer. Cell. Fact. 10: S3. https://doi.org/10.1186/1475-2859-10-S1-S3
- Zago M, Fornasari ME, Carminati D, Burns P, Suarez V, Vinderola G, et al. 2011. Characterization and probiotic potential of Lactobacillus plantarum strains isolated from cheeses. Food Microbiol. 28: 1033-1040. https://doi.org/10.1016/j.fm.2011.02.009
- Lee PC, Schmidt-Dannert C. 2002. Metabolic engineering towards biotechnological production of carotenoids in microorganisms. Appl. Microbiol. Biotechnol. 60: 1-11. https://doi.org/10.1007/s00253-002-1101-x
- Turpin W, Renaud C, Avallone S, Hammoumi A, Guyot J-P, Humblot C. 2016. PCR of crtNM combined with analytical biochemistry: An efficient way to identify carotenoid producing lactic acid bacteria. Syst. Appl. Microbiol. 39: 115-121. https://doi.org/10.1016/j.syapm.2015.12.003
- Kim M, Seo D-H, Park Y-S, Cha I-T, Seo M-J. 2019. Isolation of Lactobacillus plantarum subsp. plantarum producing C30 carotenoid 4,4'-diaponeurosporene and the assessment of its antioxidant activity. J. Microbiol. Biotechnol. 29: 1925-1930. https://doi.org/10.4014/jmb.1909.09007
- Kim M, Jung D-H, Seo D-H, Chung W-H, Seo M-J. 2020. Genome analysis of Lactobacillus plantarum subsp. plantarum KCCP11226 reveals a well-conserved C30 carotenoid biosynthetic pathway. 3 Biotech. 10: 450.
- Sachindra NM, Sato E, Maeda H, Hosokawa M, Niwano Y, Kohno M, et al. 2007. Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites. J. Agric. Food Chem. 55: 8516-8522. https://doi.org/10.1021/jf071848a
- Zhang Y, Fang H, Xie Q, Sun J, Liu R, Hong Z, et al. 2014. Comparative evaluation of the radical-scavenging activities of fucoxanthin and its stereoisomers. Molecules 19: 2100-2113. https://doi.org/10.3390/molecules19022100
- Bergamini CM, Gambetti S, Dondi A, Cervellati C. 2004. Oxygen, reactive oxygen species and tissue damage. Curr. Pharm. Design 10: 1611-1626. https://doi.org/10.2174/1381612043384664
- Young AJ, Lowe GM. 2018. Carotenoids-antioxidant properties. Antioxidants 7: 28. https://doi.org/10.3390/antiox7020028
- Hagi T, Kobayashi M, Kawamoto S, Shima J, Nomura M. 2013. Expression of novel carotenoid biosynthesis genes from Enterococcus gilvus improves the multistress tolerance of Lactococcus lactis. J. Appl. Microbiol. 114: 1763-1771. https://doi.org/10.1111/jam.12182
- Steiger S, Perez‐Fons L, Fraser P, Sandmann G. 2012. Biosynthesis of a novel C30 carotenoid in Bacillus firmus isolates. J. Appl. Microbiol. 113: 888-895. https://doi.org/10.1111/j.1365-2672.2012.05377.x
- Young AJ, Lowe GM. 2001. Antioxidant and prooxidant properties of carotenoids. Arch. Biochem. Biophys. 385: 20-27. https://doi.org/10.1006/abbi.2000.2149
- Ekmekci H, Aslim B, Ozturk S. 2009. Characterization of vaginal lactobacilli coaggregation ability with Escherichia coli. Microbiol. Immunol. 53: 59-65. https://doi.org/10.1111/j.1348-0421.2009.00115.x
- Kim SH, Kim MS, Lee BY, Lee PC. 2016. Generation of structurally novel short carotenoids and study of their biological activity. Sci. Rep. 6: 21987. https://doi.org/10.1038/srep21987
- Chae HS, Kim K-H, Kim SC, Lee PC. 2010. Strain-dependent carotenoid productions in metabolically engineered Escherichia coli. Appl. Biochem. Biotechnol. 162: 2333-2344. https://doi.org/10.1007/s12010-010-9006-0
- Wieland B, Feil C, Gloria-Maercker E, Thumm G, Lechner M, Bravo J-M, et al. 1994. Genetic and biochemical analyses of the biosynthesis of the yellow carotenoid 4,4'-diaponeurosporene of Staphylococcus aureus. J. Bacteriol. 176: 7719-7726. https://doi.org/10.1128/jb.176.24.7719-7726.1994
- Yang J, Li Y, Zhang L, Fan M, Wei X. 2017. Response surface design for accumulation of selenium by different lactic acid bacteria. 3 Biotech. 7: 52.
- Han Q, Kong B, Chen Q, Sun F, Zhang H. 2017. In vitro comparison of probiotic properties of lactic acid bacteria isolated from Harbin dry sausages and selected probiotics. J. Funct. Food 32: 391-400. https://doi.org/10.1016/j.jff.2017.03.020
- Tulumoglu S, Yuksekdag ZN, Beyatli Y, Simsek O, Cinar B, Yasar E. 2013. Probiotic properties of lactobacilli species isolated from children's feces. Anaerobe 24: 36-42. https://doi.org/10.1016/j.anaerobe.2013.09.006
- Garcia-Cayuela T, Korany AM, Bustos I, de Cadiñanos LPG, Requena T, Pelaez C, et al. 2014. Adhesion abilities of dairy Lactobacillus plantarum strains showing an aggregation phenotype. Food Res. 57: 44-50. https://doi.org/10.1016/j.foodres.2014.01.010
- Hu P-L, Yuan Y-H, Yue T-L, Guo C-F. 2018. A new method for the in vitro determination of the bile tolerance of potentially probiotic lactobacilli. Appl. Microbiol. Biotechnol. 102: 1903-1910. https://doi.org/10.1007/s00253-018-8742-x
- Frengova GI, Beshkova DM. 2009. Carotenoids from Rhodotorula and Phaffia: yeasts of biotechnological importance. J. Ind. Microbiol. Biotechnol. 36: 163-180. https://doi.org/10.1007/s10295-008-0492-9
- Simpson KL, Nakayama T, Chichester C. 1964. Biosynthesis of yeast carotenoids. J. Bacteriol. 88: 1688-1694. https://doi.org/10.1128/jb.88.6.1688-1694.1964
- Polulyakh OV, Podoprigora OI, Eliseev SA, Ershov YV, Bykhovskii VY, Dmitrovskii AA. 1992. Biosynthesis of torulene and torularhodin in the yeast Phaffia rhodozyma. Appl. Biochem. Microbiol. 27: 541-545.
- Bhosale P. 2004. Environmental and cultural stimulants in the production of carotenoids from microorganisms. Appl. Microbial. Biotechnol. 63: 351-361. https://doi.org/10.1007/s00253-003-1441-1
- Roginsky V, Lissi EA. 2005. Review of methods to determine chain-breaking antioxidant activity in food. Food Chem. 92: 235-254. https://doi.org/10.1016/j.foodchem.2004.08.004
- Mendez-Robles MD, Permady HH, Jaramillo-Flores ME, Lugo-Cervantes EC, Cardador-Martinez A, Canales-Aguirre AA, et al. 2006. C-26 and C-30 Apocarotenoids from seeds of Ditaxis heterantha with antioxidant activity and protection against DNA oxidative damage. J. Nat. Prod. 69: 1140-1144. https://doi.org/10.1021/np050489f
- Hinneburg I, Dorman HD, Hiltunen R. 2006. Antioxidant activities of extracts from selected culinary herbs and spices. Food Chem. 97: 122-129. https://doi.org/10.1016/j.foodchem.2005.03.028
- Muller L, Frohlich K, Bohm V. 2011. Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical scavenging assay. Food Chem. 129: 139-148. https://doi.org/10.1016/j.foodchem.2011.04.045