DOI QR코드

DOI QR Code

In Vivo/In Vitro Properties of Novel Antioxidant Peptide from Pinctada fucata

  • Ma, Yongkai (South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences) ;
  • Huang, Kehui (Guangzhou Maritime University) ;
  • Wu, Yanyan (South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences)
  • Received : 2020.06.02
  • Accepted : 2020.07.28
  • Published : 2021.01.28

Abstract

Due to the potential of antioxidants to scavenge free radicals in human body, it is important to be able to prepare antioxidant peptides that meet the industrial requirements for cosmetics and food. Here, we determined in vivo/in vitro activities of antioxidant peptide from P. fucata (PFAOP) prepared by bio-fermentation method. The antioxidant property test results showed the DPPH, hydroxyl, superoxide radical-scavenging, and cellular antioxidant activity. EC50 values of PFAOPs were 0.018 ± 0.005, 0.126 ± 0.008, 0.168 ± 0.005, and 0.105 ± 0.005 mg/ml, respectively, exhibiting higher antioxidant activities than glutathione (p < 0.05). Moreover, anti-proliferation and cytotoxicity activity results illustrated PFAOP has a potent anti-proliferative activity against HepG2, Caco-2, and MCF-7 carcinoma cells with no cytotoxicity. Moreover, the protocols we developed in this work demonstrated several excellent advantages in PFAOP preparation compared to enzymatic hydrolysis or chemical synthesis methods and provide a theoretical foundation for higher-value application of marine-derived functional peptides.

Keywords

References

  1. Finkel T, Holbrook NJ. 2000. Oxidants, oxidative stress and the biology of ageing. Nature 408: 239-247. https://doi.org/10.1038/35041687
  2. Wolfe KL, Kang X, He X, Dong M, Zhang Q, Liu RH. 2008. Cellular antioxidant activity of common fruits. J. Agric. Food Chem. 56: 8418-8426. https://doi.org/10.1021/jf801381y
  3. Halim NRA, Yusof HM, Sarbon NM. 2016, Functional and bioactive properties of fish protein hydolysates and peptides: a comprehensive review. Trends Food Sci. Technol. 51: 24-33. https://doi.org/10.1016/j.tifs.2016.02.007
  4. Aziz M, Karboune S. 2018. Natural antimicrobial/antioxidant agents in meat and poultry products as well as fruits and vegetables: a review. Crit. Rev. Food Sci. Nut. 58: 486-511.
  5. Lorenzo JM, Munekata PES, Gomez B, Barba FJ, Mora L, Perez-Santaescolastica, et al. 2018. Bioactive peptides as natural antioxidants in food products - a review. Trends Food Sci. Technol. 79: 136-147. https://doi.org/10.1016/j.tifs.2018.07.003
  6. Agrawal H, Joshi R, Gupta M. 2016. Isolation, purification and characterization of antioxidative peptide of pearl millet (Pennisetum glaucum) protein hydrolysate. Food Chem. 204: 365-372. https://doi.org/10.1016/j.foodchem.2016.02.127
  7. Jang HL, Liceaga AM, Yoon KY. 2016. Purification, characterisation and stability of an antioxidant peptide derived from sandfish (Arctoscopus japonicus) protein hydrolysates. J. Funct. Foods 20: 433-442. https://doi.org/10.1016/j.jff.2015.11.020
  8. Girgih AT, He R, Hasan FM, Udenigwe CC, Gill TA, Aluko R. E.2015. Evaluation of the in vitro antioxidant properties of a cod (Gadus morhua) protein hydrolysate and peptide fractions. Food Chem. 173: 652-659. https://doi.org/10.1016/j.foodchem.2014.10.079
  9. Ketnawa S, Martinez-Alvarez O, Benjakul S, Rawdkuen S. 2016. Gelatin hydrolysates from farmed Giant catfish skin using alkaline proteases and its antioxidative function of simulated gastro-intestinal digestion. Food Chem. 192: 34-42. https://doi.org/10.1016/j.foodchem.2015.06.087
  10. Ketnawa S, Benjakul S, Martinez-Alvarez O, Rawdkuen S. 2017. Fish skin gelatin hydrolysates produced by visceral peptidase and bovine trypsin: Bioactivity and stability. Food Chem. 215: 383-390. https://doi.org/10.1016/j.foodchem.2016.07.145
  11. Gu L, Zhao M, Li W, You L, Wang J, Wang H, et al. 2012. Chemical and cellular antioxidant activity of two novel peptides designed based on glutathione structure. Food Chem Toxicol. 50: 4085-91. https://doi.org/10.1016/j.fct.2012.08.028
  12. You L, Li Y, Zhao H, Regenstein, J, Zhao M, Ren J. 2014. Purification and characterization of an antioxidant protein from pearl oyster (Pinctada fucata martensii). J. Aquat. Food Prod. 24: 661-671.
  13. Liu L, Wen W, Zhang R, Wei Z, Deng Y, Xiao J, et al. 2017. Complex enzyme hydrolysis releases antioxidative phenolics from rice bran. Food Chem. 214: 1-8. https://doi.org/10.1016/j.foodchem.2016.07.038
  14. Liang R, Cheng S, Wang X. 2018. Secondary structure changes induced by pulsed electric field affect antioxidant activity of pentapeptides from pine nut (Pinus koraiensis) protein. Food Chem. 254: 170-184. https://doi.org/10.1016/j.foodchem.2018.01.090
  15. Wu Y, Tian Q, Li L, Khan MN, Yang X, Zhang Z, et al. 2013. Inhibitory effect of antioxidant peptides derived from Pinctada fucata protein on ultraviolet-induced photoaging in mice. J. Funct. Foods 5: 527-538. https://doi.org/10.1016/j.jff.2013.01.016
  16. Wu Y, Wang J, Li L, Yang X, Wang J, Hu X. 2017. Purification and identification of an antioxidant peptide from Pinctada fucata muscle. CyTA - J. Food 16: 11-19. https://doi.org/10.1080/19476337.2017.1332099
  17. Bertoni M, Kiefer F, Biasini M, Bordoli L, Schwede T. 2017. Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Sci. Rep. 7: 10480. https://doi.org/10.1038/s41598-017-09654-8
  18. Trott O, Olson AJ. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31: 455-461. https://doi.org/10.1002/jcc.21334
  19. Parret AH, Besir H, Meijers R. 2016. Critical reflections on synthetic gene design for recombinant protein expression. Curr. Opin. Struct. Biol. 38: 155-162. https://doi.org/10.1016/j.sbi.2016.07.004
  20. Dagar VK, Adivitiya, Khasa YP. 2017. High-level expression and efficient refolding of therapeutically important recombinant human Interleukin-3 (hIL-3) in E. coli. Protenin Expr. Purif. 131: 51-59. https://doi.org/10.1016/j.pep.2016.11.005
  21. Xing L, Liu R, Gao X, Zheng J, Wang C, Zhou G, et al. 2018. The proteomics homology of antioxidant peptides extracted from drycured Xuanwei and Jinhua ham. Food Chem. 266: 420-426. https://doi.org/10.1016/j.foodchem.2018.06.034
  22. Wang H, Guo X, Hu X, Li T, Fu X, Liu RH. 2017. Comparison of phytochemical profiles, antioxidant and cellular antioxidant activities of different varieties of blueberry (Vaccinium spp.). Food Chem. 217: 773-781. https://doi.org/10.1016/j.foodchem.2016.09.002
  23. Guo R, Guo X, Li T, Fu X, Liu R. H.2017. Comparative assessment of phytochemical profiles, antioxidant and antiproliferative activities of Sea buckthorn (Hippophae rhamnoides L.) berries. Food Chem. 221: 997-1003. https://doi.org/10.1016/j.foodchem.2016.11.063
  24. Chen C, Wang L, Wang R, Luo X, Li Y, Li J, et al. 2018. Phenolic contents, cellular antioxidant activity and antiproliferative capacity of different varieties of oats. Food Chem. 239: 260-267. https://doi.org/10.1016/j.foodchem.2017.06.104
  25. Zou TB, He TP, Li HB, Tang HW, Xia E. Q. 2016. The structure-activity relationship of the antioxidant peptides from natural proteins. Molecules 21: 72. https://doi.org/10.3390/molecules21010072
  26. Matsui R, Honda R, Kanome M, Hagiwara A, Matsuda Y, Togitani T, et al. 2018. Designing antioxidant peptides based on the antioxidant properties of the amino acid side-chains. Food Chem. 245: 750-755. https://doi.org/10.1016/j.foodchem.2017.11.119
  27. Deng T, Ge H, He H, Liu Y, Zhai C, Feng, et al. 2017. The heterologous expression strategies of antimicrobial peptides in microbial systems. Protein Exp. Purif. 140: 52-59. https://doi.org/10.1016/j.pep.2017.08.003
  28. Wang X, Nie Y, Xu Y. 2019. Industrially produced pullulanases with thermostability: Discovery, engineering, and heterologous expression. Bioresour. Technol. 278: 360-371. https://doi.org/10.1016/j.biortech.2019.01.098
  29. Wu YY, Li LH, Duan ZH, Yang XQ, Shang J, Chen SJ. 2011. Application of response surface methodology to optimise preparation high antioxidant activity product from Pinctada fucata muscle. Adv. Mater. Res. 396-398: 1341-1348. https://doi.org/10.4028/www.scientific.net/AMR.396-398.1341
  30. Garcia-Gimenez JL, Roma-Mateo C, Perez-Machado G, Peiro-Chova L, Pallardo, FV. 2017. Role of glutathione in the regulation of epigenetic mechanisms in disease. Free Rasic. Biol. Med. 112: 36-48.
  31. Miceli V, Pampalone M, Frazziano G, Grasso G, Rizzarelli E. Ricordi C, et al. 2018. Carnosine protects pancreatic beta cells and islets against oxidative stress damage. Mol. Cell. Endocrinol. 474: 105-118. https://doi.org/10.1016/j.mce.2018.02.016
  32. Sila A, Bougatef A. 2016. Antioxidant peptides from marine by-products: Isolation, identification and application in food systems. A review. J. Funct. Foods 21: 10-26. https://doi.org/10.1016/j.jff.2015.11.007
  33. Ngo D-H, Qian Z-J, Ryu B, Park JW, Kim S-K. 2010. In vitro antioxidant activity of a peptide isolated from Nile tilapia (Oreochromis niloticus) scale gelatin in free radical-mediated oxidative systems. J. Funct. Foods 2: 107-117. https://doi.org/10.1016/j.jff.2010.02.001
  34. Ahn CB, Kim JG Je JY. 2014. Purification and antioxidant properties of octapeptide from salmon byproduct protein hydrolysate by gastrointestinal digestion. Food Chem. 147: 78-83. https://doi.org/10.1016/j.foodchem.2013.09.136
  35. Wang B, Li L, Chi CF, Ma JH, Luo HY, Xu YF. 2013. Purification and characterisation of a novel antioxidant peptide derived from blue mussel (Mytilus edulis) protein hydrolysate. Food Chem. 138: 1713-1719. https://doi.org/10.1016/j.foodchem.2012.12.002
  36. Chi C-F, Wang B, Wang Y-M, Zhang B, Deng S-G. 2015. Isolation and characterization of three antioxidant peptides from protein hydrolysate of bluefin leatherjacket (Navodon septentrionalis) heads. J. Funct. Foods 12: 1-10. https://doi.org/10.1016/j.jff.2014.10.027
  37. You L, Zhao M, Regenstein JM, Ren J. 2010. Purification and identification of antioxidative peptides from loach (Misgurnus anguillicaudatus) protein hydrolysate by consecutive chromatography and electrospray ionization-mass spectrometry. Food Res. Int. 43: 1167-1173. https://doi.org/10.1016/j.foodres.2010.02.009
  38. Zhu Y, Li T, Fu X, Abbasi AM, Zheng B, Liu RH. 2015. Phenolics content, antioxidant and antiproliferative activities of dehulled highland barley (Hordeum vulgare L.). J. Funct. Foods 19: 439-450. https://doi.org/10.1016/j.jff.2015.09.053