DOI QR코드

DOI QR Code

Mechanisms and Control Strategies of Antibiotic Resistance in Pathological Biofilms

  • Luo, Ying (Department of Pharmacy, Hangzhou Geriatric Hospital) ;
  • Yang, Qianqian (Department of Pharmacy, Hangzhou Geriatric Hospital) ;
  • Zhang, Dan (Department of Pharmacy, Hangzhou Geriatric Hospital) ;
  • Yan, Wei (Department of Pharmacy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine)
  • Received : 2020.10.12
  • Accepted : 2020.12.03
  • Published : 2021.01.28

Abstract

Bacterial biofilm is a community of bacteria that are embedded and structured in a self-secreted extracellular matrix. An important clinical-related characteristic of bacterial biofilms is that they are much more resistant to antimicrobial agents than the planktonic cells (up to 1,000 times), which is one of the main causes of antibiotic resistance in clinics. Therefore, infections caused by biofilms are notoriously difficult to eradicate, such as lung infection caused by Pseudomonas aeruginosa in cystic fibrosis patients. Understanding the resistance mechanisms of biofilms will provide direct insights into how we overcome such resistance. In this review, we summarize the characteristics of biofilms and chronic infections associated with bacterial biofilms. We examine the current understanding and research progress on the major mechanisms of antibiotic resistance in biofilms, including quorum sensing. We also discuss the potential strategies that may overcome biofilm-related antibiotic resistance, focusing on targeting biofilm EPSs, blocking quorum sensing signaling, and using recombinant phages.

Keywords

References

  1. Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L. 2017. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat. Rev. Microbiol. 15: 740-755. https://doi.org/10.1038/nrmicro.2017.99
  2. Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. 2016. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14: 563-575. https://doi.org/10.1038/nrmicro.2016.94
  3. de Vos WM. 2015. Microbial biofilms and the human intestinal microbiome. Npj Biofilms Microbiomes 1: 15005. https://doi.org/10.1038/npjbiofilms.2015.5
  4. Percival SL, Suleman L, Vuotto C, Donelli G. 2015. Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. J. Med. Microbiol. 64: 323-334. https://doi.org/10.1099/jmm.0.000032
  5. Miquel S, Lagrafeuille R, Souweine B, Forestier C. 2016. Anti-biofilm activity as a health issue. Front. Microbiol. 7: 592. https://doi.org/10.3389/fmicb.2016.00592
  6. Lebeaux D, Ghigo JM, Beloin C. 2014. Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol. Mol. Biol. Rev. 78: 510-543. https://doi.org/10.1128/MMBR.00013-14
  7. Delcaru C, Alexandru I, Podgoreanu P, Grosu M, Stavropoulos E, Chifiriuc MC, et al. 2016. Microbial biofilms in urinary tract infections and prostatitis: etiology, pathogenicity, and combating strategies. Pathogens 5: 65. https://doi.org/10.3390/pathogens5040065
  8. Hobley L, Harkins C, MacPhee CE, Stanley-Wall NR. 2015. Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiol. Rev. 39: 649-669. https://doi.org/10.1093/femsre/fuv015
  9. Flemming HC, Wingender J. 2010. The biofilm matrix. Nat. Rev. Microbiol. 8: 623-633. https://doi.org/10.1038/nrmicro2415
  10. Jana S, Charlton SGV, Eland LE, Burgess JG, Wipat A, Curtis TP, et al. 2020. Nonlinear rheological characteristics of single species bacterial biofilms. NPJ Biofilms Microbiomes 6: 19. https://doi.org/10.1038/s41522-020-0126-1
  11. Bak G, Lee J, Suk S, Kim D, Young Lee J, Kim K-s, et al. 2015. Identification of novel sRNAs involved in biofilm formation, motility and fimbriae formation in Escherichia coli. Sci. Rep. 5: 15287. https://doi.org/10.1038/srep15287
  12. Ribet D, Cossart P. 2015. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect. 17: 173-183. https://doi.org/10.1016/j.micinf.2015.01.004
  13. Ligthart K, Belzer C, de Vos WM, Tytgat HLP. 2020. Bridging bacteria and the gut: functional aspects of type iv pili. Trends Microbiol. 28: 340-348. https://doi.org/10.1016/j.tim.2020.02.003
  14. Papenfort K, Bassler BL. 2016. Quorum sensing signal-response systems in Gram-negative bacteria. Nat. Rev. Microbiol. 14: 576-588. https://doi.org/10.1038/nrmicro.2016.89
  15. Hazan Z, Zumeris J, Jacob H, Raskin H, Kratysh G, Vishnia M, et al. 2006. Effective prevention of microbial biofilm formation on medical devices by low-energy surface acoustic waves. Antimicrob. Agents Chemother. 50: 4144-4152. https://doi.org/10.1128/AAC.00418-06
  16. Limoli DH, Jones CJ, Wozniak DJ. 2015. Bacterial extracellular polysaccharides in biofilm formation and function. Microbiol. Spectr. 3: 10.1128/microbiolspec.MB-0011-2014.
  17. Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, et al. 2018. Bacterial biofilm and associated infections. J. Chin. Med. Assoc. 81: 7-11. https://doi.org/10.1016/j.jcma.2017.07.012
  18. Wannigama DL, Hurst C, Pearson L, Saethang T, Singkham-in U, Luk-in S, et al. 2019. Simple fluorometric-based assay of antibiotic effectiveness for Acinetobacter baumannii biofilms. Sci. Rep. 9: 6300. https://doi.org/10.1038/s41598-019-42353-0
  19. Nandakumar V, Chittaranjan S, Kurian VM, Doble M. 2012. Characteristics of bacterial biofilm associated with implant material in clinical practice. Polymer J. 45: 137-142. https://doi.org/10.1038/pj.2012.130
  20. Hathroubi S, Mekni MA, Domenico P, Nguyen D, Jacques M. 2017. Biofilms: microbial shelters against antibiotics. Microb. Drug Resist. 23: 147-156. https://doi.org/10.1089/mdr.2016.0087
  21. Yin W, Wang Y, Liu L, He J. 2019. Biofilms: the microbial "protective clothing" in extreme environments. Int. J. Mol. Sci. 20: 3423. https://doi.org/10.3390/ijms20143423
  22. Tseng BS, Zhang W, Harrison JJ, Quach TP, Song JL, Penterman J, et al. 2013. The extracellular matrix protects Pseudomonas aeruginosa biofilms by limiting the penetration of tobramycin. Environ. Microbiol. 15: 2865-2878. https://doi.org/10.1111/1462-2920.12155
  23. Zhou G, Shi Q-S, Huang X-M, Xie X-B. 2015. The three bacterial lines of defense against antimicrobial agents. Int. J. Mol. Sci. 16: 21711-21733. https://doi.org/10.3390/ijms160921711
  24. Sharma D, Misba L, Khan AU. 2019. Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control 8: 76. https://doi.org/10.1186/s13756-019-0533-3
  25. Stewart PS, Zhang T, Xu R, Pitts B, Walters MC, Roe F, et al. 2016. Reaction-diffusion theory explains hypoxia and heterogeneous growth within microbial biofilms associated with chronic infections. Npj Biofilms Microbiomes 2: 16012. https://doi.org/10.1038/npjbiofilms.2016.12
  26. Singh S, Singh SK, Chowdhury I, Singh R. 2017. Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol. J. 11: 53-62. https://doi.org/10.2174/1874285801711010053
  27. Miao Y, Zhou J, Chen C, Shen D, Song W, Feng Y. 2008. In vitro adsorption revealing an apparent strong interaction between endophyte Pantoea agglomerans YS19 and host rice. Curr. Microbiol. 57: 547-551. https://doi.org/10.1007/s00284-008-9240-7
  28. Li Q, Miao Y, Yi T, Zhou J, Lu Z, Feng Y. 2012. SPM43.1 contributes to acid-resistance of non-symplasmata-forming cells in Pantoea agglomerans YS19. Curr. Microbiol. 64: 214-221. https://doi.org/10.1007/s00284-011-0055-6
  29. Zhao X, Yu Z, Ding T. 2020. Quorum-sensing regulation of antimicrobial resistance in bacteria. Microorganisms 8: 425. https://doi.org/10.3390/microorganisms8030425
  30. Passos da Silva D, Schofield MC, Parsek MR, Tseng BS. 2017. An update on the sociomicrobiology of quorum sensing in gramnegative biofilm development. Pathogens 6: 51. https://doi.org/10.3390/pathogens6040051
  31. Rutherford ST, Bassler BL. 2012. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb. Perspect. Med. 2: a012427. https://doi.org/10.1101/cshperspect.a012427
  32. Whiteley M, Diggle SP, Greenberg EP. 2017. Progress in and promise of bacterial quorum sensing research. Nature 551: 313-320. https://doi.org/10.1038/nature24624
  33. Wolska KI, Grudniak AM, Rudnicka Z, Markowska K. 2016. Genetic control of bacterial biofilms. J. Appl. Genet. 57: 225-238. https://doi.org/10.1007/s13353-015-0309-2
  34. Blanco P, Hernando-Amado S, Reales-Calderon JA, Corona F, Lira F, Alcalde-Rico M, et al. 2016. Bacterial multidrug efflux pumps: Much more than antibiotic resistance determinants. Microorganisms 4: 14. https://doi.org/10.3390/microorganisms4010014
  35. Pena RT, Blasco L, Ambroa A, Gonzalez-Pedrajo B, Fernandez-Garcia L, Lopez M, et al. 2019. Relationship between quorum sensing and secretion systems. Front. Microbiol. 10: 1100. https://doi.org/10.3389/fmicb.2019.01100
  36. Qian G, Zhou Y, Zhao Y, Song Z, Wang S, Fan J, et al. 2013. Proteomic analysis reveals novel extracellular virulence-associated proteins and functions regulated by the diffusible signal factor (DSF) in Xanthomonas oryzae pv. oryzicola. J. Proteome Res. 12: 3327-3341. https://doi.org/10.1021/pr4001543
  37. Jiang Q, Chen J, Yang C, Yin Y, Yao K. 2019. Quorum sensing: a prospective therapeutic target for bacterial diseases. Biomed. Res. Int. 2019: 2015978.
  38. Hu M, Zhang C, Mu Y, Shen Q, Feng Y. 2010. Indole affects biofilm formation in bacteria. Indian J. Microbiol. 50: 362-368. https://doi.org/10.1007/s12088-011-0142-1
  39. Yaikhan T, Chuerboon M, Tippayatham N, Atimuttikul N, Nuidate T, Yingkajorn M, et al. 2019. Indole and derivatives modulate biofilm formation and antibiotic tolerance of Klebsiella pneumoniae. Indian J. Microbiol. 59: 460-467. https://doi.org/10.1007/s12088-019-00830-0
  40. Abisado RG, Benomar S, Klaus JR, Dandekar AA, Chandler JR. 2018. Bacterial quorum sensing and microbial community interactions. mBio 9: e02331-17.
  41. Zhang J-W, Xuan C-G, Lu C-H, Guo S, Yu J-F, Asif M, et al. 2019. AidB, a novel thermostable n-acylhomoserine lactonase from the Bacterium Bosea sp. Appl. Environ. Microbiol. 85: e02065-02019.
  42. Blocher R, Rodarte Ramirez A, Castro-Escarpulli G, Curiel-Quesada E, Reyes-Arellano A. 2018. Design, synthesis, and evaluation of alkyl-quinoxalin-2(1h)-one derivatives as anti-quorum sensing molecules, inhibiting biofilm formation in Aeromonas caviae Sch3. Molecules 23: 3075. https://doi.org/10.3390/molecules23123075
  43. Wei Q, Bhasme P, Wang Z, Wang L, Wang S, Zeng Y, et al. 2020. Chinese medicinal herb extract inhibits PQS-mediated quorum sensing system in Pseudomonas aeruginosa. J. Ethnopharmacol. 248: 112272. https://doi.org/10.1016/j.jep.2019.112272
  44. Van Acker H, Coenye T. 2016. The role of efflux and physiological adaptation in biofilm tolerance and resistance. J. Biol. Chem. 291: 12565-12572. https://doi.org/10.1074/jbc.R115.707257
  45. Zhang L, Mah TF. 2008. Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. J. Bacteriol. 190: 4447-4452. https://doi.org/10.1128/JB.01655-07
  46. Ferrer-Espada R, Shahrour H, Pitts B, Stewart PS, Sanchez-Gomez S, Martinez-de-Tejada G. 2019. A permeability-increasing drug synergizes with bacterial efflux pump inhibitors and restores susceptibility to antibiotics in multi-drug resistant Pseudomonas aeruginosa strains. Sci. Rep. 9: 3452. https://doi.org/10.1038/s41598-019-39659-4
  47. Liao J, Schurr MJ, Sauer K. 2013. The MerR-like regulator BrlR confers biofilm tolerance by activating multidrug efflux pumps in Pseudomonas aeruginosa biofilms. J. Bacteriol. 195: 3352-3363. https://doi.org/10.1128/JB.00318-13
  48. Kim J, Pitts B, Stewart PS, Camper A, Yoon J. 2008. Comparison of the antimicrobial effects of chlorine, silver ion, and tobramycin on biofilm. Antimicrob. Agents Chemother. 52: 1446-1453. https://doi.org/10.1128/AAC.00054-07
  49. Alcalde-Rico M, Olivares-Pacheco J, Alvarez-Ortega C, Camara M, Martinez JL. 2018. Role of the multidrug resistance efflux pump MexCD-OprJ in the Pseudomonas aeruginosa quorum sensing response. Front. Microbiol. 9: 2752. https://doi.org/10.3389/fmicb.2018.02752
  50. Alcalde-Rico M, Olivares-Pacheco J, Halliday N, Camara M, Martinez JL. 2020. The analysis of the role of MexAB-OprM on quorum sensing homeostasis shows that the apparent redundancy of Pseudomonas aeruginosa multidrug efflux pumps allows keeping the robustness and the plasticity of this intercellular signaling network. bioRxiv. 2020.2003.2010.986737.
  51. He N, Hu J, Liu H, Zhu T, Huang B, Wang X, et al. 2011. Enhancement of vancomycin activity against biofilms by using ultrasoundtargeted microbubble destruction. Antimicrob. Agents Chemother. 55: 5331-5337. https://doi.org/10.1128/aac.00542-11
  52. Harrison-Balestra C, Cazzaniga AL, Davis SC, Mertz PM. 2003. A wound-isolated Pseudomonas aeruginosa grows a biofilm in vitro within 10 hours and is visualized by light microscopy. Dermatol. Surg. 29: 631-635. https://doi.org/10.1097/00042728-200306000-00016
  53. Wolcott RD, Rumbaugh KP, James G, Schultz G, Phillips P, Yang Q, et al. 2010. Biofilm maturity studies indicate sharp debridement opens a time- dependent therapeutic window. J. Wound Care 19: 320-328. https://doi.org/10.12968/jowc.2010.19.8.77709
  54. Vuotto C, Donelli G. 2019. Novel treatment strategies for biofilm-based infections. Drugs 79: 1635-1655. https://doi.org/10.1007/s40265-019-01184-z
  55. Gunn JS, Bakaletz LO, Wozniak DJ. 2016. What's on the outside matters: the role of the extracellular polymeric substance of gramnegative biofilms in evading host immunity and as a target for therapeutic intervention. J. Biol. Chem. 291: 12538-12546. https://doi.org/10.1074/jbc.R115.707547
  56. Peng X, Zhang Y, Bai G, Zhou X, Wu H. 2016. Cyclic di-AMP mediates biofilm formation. Mol. Microbiol. 99: 945-959. https://doi.org/10.1111/mmi.13277
  57. Ren Z, Cui T, Zeng J, Chen L, Zhang W, Xu X, et al. 2016. Molecule targeting glucosyltransferase inhibits Streptococcus mutans biofilm formation and virulence. Antimicrob. Agents Chemother. 60: 126-135. https://doi.org/10.1128/AAC.00919-15
  58. Qvortrup K, Hultqvist LD, Nilsson M, Jakobsen TH, Jansen CU, Uhd J, et al. 2019. Small molecule anti-biofilm agents developed on the basis of mechanistic understanding of biofilm formation. Front. Chem. 7: 742. https://doi.org/10.3389/fchem.2019.00742
  59. Kaplan JB. 2014. Biofilm matrix-degrading enzymes. Methods Mol. Biol. 1147: 203-213. https://doi.org/10.1007/978-1-4939-0467-9_14
  60. Fleming D, Chahin L, Rumbaugh K. 2017. Glycoside hydrolases degrade polymicrobial bacterial biofilms in wounds. Antimicrob. Agents Chemother. 61: e01998-16.
  61. Iwase T, Uehara Y, Shinji H, Tajima A, Seo H, Takada K, et al. 2010. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 465: 346-349. https://doi.org/10.1038/nature09074
  62. Okshevsky M, Regina VR, Meyer RL. 2015. Extracellular DNA as a target for biofilm control. Curr. Opin. Biotechnol. 33: 73-80. https://doi.org/10.1016/j.copbio.2014.12.002
  63. Hymes SR, Randis TM, Sun TY, Ratner AJ. 2013. DNase inhibits Gardnerella vaginalis biofilms in vitro and in vivo. J. Infect. Dis. 207: 1491-1497. https://doi.org/10.1093/infdis/jit047
  64. Baelo A, Levato R, Julian E, Crespo A, Astola J, Gavalda J, et al. 2015. Disassembling bacterial extracellular matrix with DNase-coated nanoparticles to enhance antibiotic delivery in biofilm infections. J. Control. Release 209: 150-158. https://doi.org/10.1016/j.jconrel.2015.04.028
  65. Brackman G, Coenye T. 2015. Quorum sensing inhibitors as anti-biofilm agents. Curr. Pharm. Des. 21: 5-11. https://doi.org/10.2174/1381612820666140905114627
  66. Kalia M, Yadav VK, Singh PK, Dohare S, Sharma D, Narvi SS, et al. 2019. Designing quorum sensing inhibitors of Pseudomonas aeruginosa utilizing FabI: an enzymic drug target from fatty acid synthesis pathway. 3 Biotech. 9: 40. https://doi.org/10.1007/s13205-019-1567-1
  67. Zhang J, Wang J, Feng T, Du R, Tian X, Wang Y, et al. 2019. Heterologous expression of the marine-derived quorum quenching enzyme moml can expand the antibacterial spectrum of Bacillus brevis. Mar. Drugs 17: 128. https://doi.org/10.3390/md17020128
  68. Luo J, Dong B, Wang K, Cai S, Liu T, Cheng X, et al. 2017. Baicalin inhibits biofilm formation, attenuates the quorum sensingcontrolled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model. PLoS One 12: e0176883. https://doi.org/10.1371/journal.pone.0176883
  69. Sun B, Zhang M. 2016. Analysis of the antibacterial effect of an Edwardsiella tarda LuxS inhibitor. Springerplus 5: 92-92. https://doi.org/10.1186/s40064-016-1733-4
  70. McBrayer DN, Cameron CD, Tal-Gan Y. 2020. Development and utilization of peptide-based quorum sensing modulators in Grampositive bacteria. Org. Biomol. Chem. 18: 7273-7290. https://doi.org/10.1039/D0OB01421D
  71. de la Fuente-Nunez C, Cardoso MH, de Souza Candido E, Franco OL, Hancock RE. 2016. Synthetic antibiofilm peptides. Biochim. Biophys. Acta 1858: 1061-1069. https://doi.org/10.1016/j.bbamem.2015.12.015
  72. Asfour HZ. 2018. Anti-quorum sensing natural compounds. J. Microsc. Ultrastruct. 6: 1-10. https://doi.org/10.4103/JMAU.JMAU_10_18
  73. Paul D, Gopal J, Kumar M, Manikandan M. 2018. Nature to the natural rescue: silencing microbial chats. Chem. Biol. Interact. 280: 86-98. https://doi.org/10.1016/j.cbi.2017.12.018
  74. Defoirdt T. 2018. Quorum-sensing systems as targets for antivirulence therapy. Trends Microbiol. 26: 313-328. https://doi.org/10.1016/j.tim.2017.10.005
  75. Donlan RM. 2009. Preventing biofilms of clinically relevant organisms using bacteriophage. Trends Microbiol. 17: 66-72. https://doi.org/10.1016/j.tim.2008.11.002
  76. Jamal M, Hussain T, Das CR, Andleeb S. 2015. Characterization of Siphoviridae phage Z and studying its efficacy against multidrugresistant Klebsiella pneumoniae planktonic cells and biofilm. J. Med. Microbiol. 64: 454-462. https://doi.org/10.1099/jmm.0.000040
  77. O'Flaherty S, Ross RP, Meaney W, Fitzgerald GF, Elbreki MF, Coffey A. 2005. Potential of the polyvalent anti-Staphylococcus bacteriophage K for control of antibiotic-resistant staphylococci from hospitals. Appl. Environ. Microbiol. 71: 1836-1842. https://doi.org/10.1128/AEM.71.4.1836-1842.2005
  78. Cerca N, Oliveira R, Azeredo J. 2007. Susceptibility of Staphylococcus epidermidis planktonic cells and biofilms to the lytic action of staphylococcus bacteriophage K. Lett. Appl. Microbiol. 45: 313-317. https://doi.org/10.1111/j.1472-765X.2007.02190.x
  79. Chan BK, Abedon ST. 2015. Bacteriophages and their enzymes in biofilm control. Curr. Pharm. Des. 21: 85-99. https://doi.org/10.2174/1381612820666140905112311
  80. Abedon ST. 2019. Use of phage therapy to treat long-standing, persistent, or chronic bacterial infections. Adv. Drug Deliv. Rev. 145: 18-39. https://doi.org/10.1016/j.addr.2018.06.018
  81. Lee NY, Ko WC, Hsueh PR. 2019. Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Front. Pharmacol. 10: 1153. https://doi.org/10.3389/fphar.2019.01153
  82. Hetrick EM, Shin JH, Paul HS, Schoenfisch MH. 2009. Anti-biofilm efficacy of nitric oxide-releasing silica nanoparticles. Biomaterials 30: 2782-2789. https://doi.org/10.1016/j.biomaterials.2009.01.052
  83. Rai MK, Deshmukh SD, Ingle AP, Gade AK. 2012. Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J. Appl. Microbiol. 112: 841-852. https://doi.org/10.1111/j.1365-2672.2012.05253.x
  84. Caubet R, Pedarros-Caubet F, Chu M, Freye E, de Belem Rodrigues M, Moreau JM, et al. 2004. A radio frequency electric current enhances antibiotic efficacy against bacterial biofilms. Antimicrob. Agents Chemother. 48: 4662-4664. https://doi.org/10.1128/AAC.48.12.4662-4664.2004
  85. Niepa THR, Wang H, Gilbert JL, Ren D. 2017. Eradication of Pseudomonas aeruginosa cells by cathodic electrochemical currents delivered with graphite electrodes. Acta Biomater. 50: 344-352. https://doi.org/10.1016/j.actbio.2016.12.053
  86. Dusane DH, Lochab V, Jones T, Peters CW, Sindeldecker D, Das A, et al. 2019. Electroceutical treatment of Pseudomonas aeruginosa biofilms. Sci. Rep. 9: 2008. https://doi.org/10.1038/s41598-018-37891-y
  87. Tursi SA, Puligedda RD, Szabo P, Nicastro LK, Miller AL, Qiu C, et al. 2020. Salmonella Typhimurium biofilm disruption by a human antibody that binds a pan-amyloid epitope on curli. Nat. Commun. 11: 1007. https://doi.org/10.1038/s41467-020-14685-3
  88. Rasko DA, Sperandio V. 2010. Anti-virulence strategies to combat bacteria-mediated disease. Nat. Rev. Drug Discov. 9: 117-128. https://doi.org/10.1038/nrd3013
  89. Ghosh A, Jayaraman N, Chatterji D. 2020. Small-molecule inhibition of bacterial biofilm. ACS Omega 5: 3108-3115. https://doi.org/10.1021/acsomega.9b03695
  90. Cavalheiro M, Teixeira MC. 2018. Candida biofilms: threats, challenges, and promising Strategies. Front. Med. (Lausanne) 5: 28. https://doi.org/10.3389/fmed.2018.00028
  91. Verderosa AD, Totsika M, Fairfull-Smith KE. 2019. Bacterial biofilm eradication agents: a current review. Front. Chem. 7: 824. https://doi.org/10.3389/fchem.2019.00824

Cited by

  1. Assessment of phage-mediated control of antibiotic-resistant Salmonella Typhimurium during the transition from planktonic to biofilm cells vol.162, 2021, https://doi.org/10.1016/j.micpath.2021.105365