DOI QR코드

DOI QR Code

리빙 콘크리트 패널용 마그네시아 복합체의 마그네시아 및 인산칼륨 비율에 따른 기초 품질 특성

The Quality Properties According to the Ratio of Magnesia and Potassium Phosphate of Magnesia Composites for Living Concrete Panel

  • 최연왕 (세명대학교 토목공학과) ;
  • 남은준 (세명대학교 건설공학과) ;
  • 김철규 (세명대학교 건설공학과) ;
  • 양능원 (세명대학교 건설공학과)
  • Choi, Yun-Wang (Department of Civil Engineering, Semyung University) ;
  • Nam, Eun-Joon (Department of Civil Engineering, Semyung University) ;
  • Kim, Cheol-Gyu (Department of Civil Engineering, Semyung University) ;
  • Yang, Neung-Won (Department of Civil Engineering, Semyung University)
  • 투고 : 2021.11.12
  • 심사 : 2021.12.16
  • 발행 : 2021.12.30

초록

본 연구에서는 리빙 콘크리트 패널 설계시, 재료적 측면에서 모재료의 품질을 제어하기 위하여 마그네시아 복합체의 마그네시아 및 인산칼륨 비율에 따른 품질특성을 평가하였다. 품질특성은 W/B는 7수준(30, 35, 40, 45, 50, 55 및 60%), P:M 4수준(1:0.5, 1:1.0, 1:2.0 및 1:3.0 vol. %)에 따라 제조하여 평가하였다. 마그네시아 복합체의 플로우 평가결과, W/B가 증가할수록 플로우가 증가하는 경향이 나타났으며, P:M 증가에 따라 플로우가 감소하는 경향이 나타났다. 마그네시아 복합체의 압축강도 평가결과, P:M이 증가함에 따라 강도가 감소하는 경향이 나타났으나 최적의 배합비율이 존재함을 확인할 수 있었다.

In this study, the quality properties according to the ratio of magnesia and potassium phosphate of the magnesia composite were evaluated to control the quality of the parent material in terms of materials when designing living concrete panels. The quality properties are 7 levels (30, 35, 40, 45, 50, 55 and 60%) for W/B, 4 levels for P:M (1:0.5, 1:1.0, 1:2.0 and 1:3.0 vol. %) was prepared and evaluated. As a result of evaluating the flow of the magnesia complex, as W/B increased, the flow showed a tendency to increase, and the flow showed a tendency to decrease as the P:M increased. As a result of the evaluation of the compressive strength of the magnesia composite, the strength showed a tendency to decrease as P:M increased. In addition, it was confirmed that an optimal P:M ratio exists.

키워드

과제정보

이 연구는 건설 기술 연구의 보조금(21CTAP-C163834-01)의 지원을 받았습니다. 한국 정부의 국토교통부에서 지원하는 프로그램입니다.

참고문헌

  1. Cha, H.J., Lim, J.H. (2011). The effect of urban road vegetation on a decrease of road surface temperature, Journal of Korean Institute of Landscape Architecture, 39(3), 107-116. https://doi.org/10.9715/KILA.2011.39.3.107
  2. Chae, C.U., Suh, C.H. (1994). Am experimental study on the lightweight precast concrete panel development, Proceeding of the Architectural Institute of Korea, 14(1), 521-524.
  3. de Los Rios, A., Camara, B., Cura, M.A.G., Rico, V.J., Galvan, V., Ascaso, C. (2009). Deteriorating effects of lichen and microbial colonization of carbonate building rocks in the Romanesque churches of Segovia, Journal of Science of The Total Environment, 407(3), 1123-1134. https://doi.org/10.1016/j.scitotenv.2008.09.042
  4. Eggert, A., Haubner, N., Klausch, S., Karsten, U., Schumann, R. (2006). Quantification of algal biofilms colonising building materials: chlorophyll a measured by PAM-fluorometry as a Biomass Paramete,, Journal of Biofouling, 22(2), 79-90. https://doi.org/10.1080/08927010600579090
  5. Favero-Longo, S.E., Castelli, D., Fubini, B., Piervittori, R. (2009). Lichens on asbestos-cement roofs: bioweathering and biocovering effects, Journal of Hazardous Materials, 162(2-3), 1300-1308. https://doi.org/10.1016/j.jhazmat.2008.06.060
  6. Guillitte, O., Dreesen, R. (1995). Laboratory chamber studies and petrographical analysis as bioreceptivity assessment tools of building materials, Journal of Science of The Total Environment, 167(1-3), 365-374. https://doi.org/10.1016/0048-9697(95)04596-S
  7. Jeon, J.K., An, Y.S., Kim, E.J. (2014). Performance evaluation study on green-wall system using moss, Magazine of the Korea Concrete Institute, 26(3), 36-40 [In Korean]. https://doi.org/10.22636/MKCI.2014.26.3.36
  8. Kim, J.H., Kang, S.P., No, H.N., Lee, B.C. (2015). Characteristics and application of magnesia phosphate ceramic for construction materials, Magazine of the Korea Concrete Institute, 27(6), 57-62. https://doi.org/10.22636/MKCI.2015.27.6.57
  9. Kim, S.B., Kim, G.H., Cho, J.H. (2001). The urban heat island phenomenon and potential mitigation strategies, Journal of Nakdong River Environmental Research Institute, 6(1), 63-89.
  10. Kim, T.H., Li, F.Q., Ahn, T.W., Choi, I.S., Oh, J.M. (2011b). Research on improvement of water purification efficiency by concrete using bio film, Journal of Environmental Impact Assessment, 20(6), 815-821. https://doi.org/10.14249/EIA.2011.20.6.815
  11. Kim, Y.J., Kang, D.H., Ahn, K.H. (2011a). Characteristics of urban heat-island phenomena caused by climate changes in Seoul, and alternative urban design approaches for their improvements, Journal of the Urban Design Institute of Korea Urban Design, 12(3), 5-14.
  12. Korea Concrete Institute. (2009). Concrete Standard Specification, Korea Concrete Institute Korea.
  13. Lee, J.S., Park, S.H., Kim, Y.S., Shin, H.C. (2012). A fundamental experiment of the artificial soil mixture using stone sludge burning pellet for applying to green roof soil, Journal of the Korea Concrete Institute, 24(2), 209-210 [In Korean].
  14. Ma, H., Xu, B. (2017). Potential to designmagnesium potassiumphosphate cement paste based on an optimal magnesia-to-phosphate ratio, Journal of Materials and Design, 118, 81-88. https://doi.org/10.1016/j.matdes.2017.01.012
  15. Manso, S., Muynck, W.D., Segura, I., Aguado, A., Steppe, K., Boon, N., Belie, N.D. (2014). Bioreceptivity evaluation of cementitious materials designed to stimulate biological growth, Journal of Science of The Total Environment, 481, 232-241. https://doi.org/10.1016/j.scitotenv.2014.02.059
  16. Myung, S.J. (2015). The effect of green area in urban area on mitigation of urban heat island, Proceeding of Korean Meteorological Society, 2, 402-403.
  17. Papida, S., Murphy, W., May, E. (2000). Enhancement of physical weathering of building stones by microbial populations, International Biodeterioration & Biodegradation, 46(4), 305-317. https://doi.org/10.1016/S0964-8305(00)00102-5
  18. Park, E.H., Oh, C.H. (2011). A study of CO2 reduction effect by preventing heat island, Proceeding of Korean Society of Environment and Ecology, 21(1), 133-141.
  19. Perini, K., Ottele, M., Haas, E., Raiteri, R. (2011). Greening the building envelope, facade greening and living wall systems, Journal of Ecology, 1(1), 1-8.