Acknowledgement
The analysis of the numerical models was performed through the use of a fast PC that was purchased under the eternal financial support received from the Research Development Programme (RDP), year 2019, round No 1, University of Pretoria, under the project titled "Future of Reinforced Concrete Analysis" (FU.RE.CON.AN.); a research fund awarded to the first author in support to his research activities. This financial support is highly acknowledged.
References
- Abdalla, J.A., Elsanosi, A. and Abdelwahab, A. (2007), "Modeling and simulation of shear resistance of R/C beams using artificial neural network", J. Franklin Inst., 344(5), 741-756. https://doi.org/10.1016/j.jfranklin.2005.12.005.
- ACI (2014), A.C. Institute, Building Code Requirements for Structural Concrete (ACI 318-14), Commentary on Building Code Requirements for Structural Concrete (ACI 318R-14), ACI Report, American Concrete Institute.
- ACI (2019), A.C. Institute, Building Code Requirements for Structural Concrete (ACI 318-19), Commentary on Building Code Requirements for Structural Concrete (ACI 318R-19), ACI Report, American Concrete Institute.
- Ahmad, I., Shah, A. and Khan, A.N. (2010), "Application of neural network model for the prediction of shear strength of reinforced concrete beams", Neural Network World, 20(5), 667.
- Amani, J. and Moeini, R. (2012), "Prediction of shear strength of reinforced concrete beams using adaptive neuro-fuzzy inference system and artificial neural network", Scientia Iranica, 19(2), 242-248. https://doi.org/10.1016/j.scient.2012.02.009.
- Ananthaswamy, A. (2019), "From counting with stones to artificial intelligence: the story of calculus", Nat., 568(7750), 32. https://doi.org/10.1038/d41586-019-01038-4
- Bakas, N.P. (2018), "NOESYS-AI Regression: A generic framework for predictive modeling and sensitivity analysis".
- Bakas, N.P. (2019), "Numerical solution for the extrapolation problem of analytic functions", Res., 3903187. https://doi.org/10.34133/2019/3903187.
- Bezanson, J., Edelman, A., Karpinski, S. and Shah, V.B. (2017), "Julia: A fresh approach to numerical computing", SIAM Rev., 59(1), 65-98. https://doi.org/10.1137/141000671.
- Breiman, L. (2001), "Random Forests", Machine Learn., 45(1), 5-32. https://doi.org/10.1023/A:1010933404324.
- Cladera, A. and Mari, A. (2004), "Shear design procedure for reinforced normal and high-strength concrete beams using artificial neural networks. part I: Beams without stirrups", Eng. Struct., 26(7), 917-926. https://doi.org/10.1016/j.engstruct.2004.02.010.
- Demanet, L. and Townsend, A. (2019), "Stable extrapolation of analytic functions", Found. Comput. Math., 19(2), 297-331. https://doi.org/10.1007/s10208-018-9384-1.
- Dimopoulos, T. and Bakas, N. (2019), "An artificial intelligence algorithm analyzing 30 years of research in mass appraisals", Int. J. Real Estate Land Plan., 2(2019), 10-27. https://doi.org/10.26262/reland.v2i0.6749.
- Dimopoulos, T., Tyralis, H., Bakas, N.P. and Hadjimitsis, D. (2018), "Accuracy measurement of random forests and linear regression for mass appraisal models that estimate the prices of residential apartments in Nicosia, Cyprus", Adv. Geosci., 45(2018), 377-382. https://doi.org/10.5194/adgeo-45-377-2018.
- Dutta, S., Samui, P. and Kim, D. (2018), "Comparison of machine learning techniques to predict compressive strength of concrete", Comput. Concrete, 21(4), 463-470. https://doi.org/10.12989/cac.2018.21.4.463.
- Faggion Jr, C.M., Ware, R.S., Bakas, N. and Wasiak, J. (2018), "An analysis of retractions of dental publications", J. Dent., 79(2018), 19-23. https://doi.org/10.1016/j.jdent.2018.09.002
- Friedman, J.H. (2002), "Stochastic gradient boosting", Comput. Stat. Data Anal., 38(4), 367-378. https://doi.org/10.1016/S0167-9473(01)00065-2.
- Gevrey, M., Dimopoulos, I. and Lek, S. (2003), "Review and comparison of methods to study the contribution of variables in artificial neural network models", Ecol. Model., 160(3), 249-264. https://doi.org/10.1016/S0304-3800(02)00257-0.
- Golafshani, E. and Pazouki, G. (2018), "Predicting the compressive strength of self-compacting concrete containing fly ash using a hybrid artificial intelligence method", Comput. Concrete, 22(4), 419-437. https://doi.org/10.12989/cac.2018.22.4.419.
- Hall, P. and Turlach, B.A. (1997), "Interpolation methods for nonlinear wavelet regression with irregularly spaced design", Annal. Stat., 25(5), 1912-1925. https://doi.org/10.1214/aos/1069362378.
- Hutson, M. (2018), "AI researchers allege that machine learning is alchemy", Sci., 360(6388), 861. https://doi.org/10.1126/science.aar8480
- Iruansi, O., Guadagnini, M., Pilakoutas, K. and Neocleous, K. (2012), "Predicting the shear resistance of RC beams without shear reinforcement using a Bayesian neural network", Int. J. Rel. Saf., 6(1-3), 82-109. https://doi.org/10.1504/IJRS.2012.044299
- Jung, S. and Kim, K.S. (2008), "Knowledge-based prediction of shear strength of concrete beams without shear reinforcement", Eng. Struct., 30(6), 1515-1525. https://doi.org/10.1016/j.engstruct.2007.10.008.
- Kaya, M. (2018), "Developing a new mutation operator to solve the RC deep beam", Comput. Concrete, 22(5), 493-500. https://doi.org/10.12989/cac.2018.22.5.493.
- Keskin, R.S. and Arslan, G. (2013), "Predicting diagonal cracking strength of RC slender beams without stirrups using ANNs", Comput. Concrete, 12(5), 697-715. https://doi.org/10.12989/cac.2013.12.5.697.
- Koopmans, L.H., Owen, D.B. and Rosenblatt, J.I. (1964), "Confidence intervals for the coefficient of variation for the normal and log normal distributions", Biometrika, 51, 25-32. https://doi.org/10.2307/2334192.
- Kotsakis, A., Nubling, M., Pelekanakis, G., Bakas, N. and Thanopoulos, J. (2018), "The Greek COPSOQ v.3 validation study, a post crisis assessment of the psychosocial risks in Greece", 2nd International Conference on Sustainable Employability-Building Bridges between Science and Practice.
- Kotsovos, M.D. (2015), Finite-element Modelling of Structural Concrete: Short-term Static and Dynamic Loading Conditions, CRC Press.
- Lagaros, N.D., Bakas, N. and Papadrakakis, M. (2009), "Optimum design approaches for improving the seismic performance of 3d RC buildings", J. Earthq. Eng., 13(3), 345-363. https://doi.org/10.1080/13632460802598594.
- Lagaros, N.D., Papadrakakis, M. and Bakas, N. (2006), "Automatic minimization of the rigidity eccentricity of 3d reinforced concrete buildings", J. Earthq. Eng., 10(4), 533-564. https://doi.org/10.1080/13632460609350609
- Liu, X., Zhao, D., Xiong, R., Ma S., Gao, W. and Sun, H. (2011), "Image interpolation via regularized local linear regression", IEEE Transac. Image Proc., 20(12), 3455-3469. https://doi.org/10.1109/TIP.2011.2150234.
- Mansour, M.Y., Dicleli, M., Lee, J.Y. and Zhang, J. (2004), "Predicting the shear strength of reinforced concrete beams using artificial neural networks", Eng. Struct., 26(6), 781-799. https://doi.org/10.1016/j.engstruct.2004.01.011.
- Markou, G. (2015), "Computational performance of an embedded reinforcement mesh generation method for large-scale RC simulations", Int. J. Comput. Method., 12(03), 1550019. https://doi.org/10.1142/S021987621550019X.
- Markou, G. and AlHamaydeh, M. (2018), "3D finite element modeling of GFRP-reinforced concrete deep beams without shear reinforcement", Int. J. Comput. Method., 15(02), 1850001. https://doi.org/10.1142/S0219876218500019.
- Markou, G. and Genco, F. (2019), "Seismic assessment of small modular reactors: Nuscale case study for the 8.8 mw earthquake in Chile", Nucl. Eng. Des., 342(2019), 176-204. https://doi.org/10.1016/j.nucengdes.2018.12.002.
- Markou, G. and Papadrakakis, M. (2013), "Computationally efficient 3D finite element modeling of RC structures", Comput. Concete, 12(4), 443-498. http://doi.org/10.12989/cac.2013.12.4.443.
- Markou, G. and Papadrakakis, M. (2015), "A simplified and efficient hybrid finite element model (HYMOD) for non-linear 3D simulation of RC structures", Eng. Comput., 32(5), 1477-1524. https://doi.org/10.1108/EC-11-2013-0269.
- Markou, G., Mourlas, C. and Papadrakakis, M. (2017), "Cyclic nonlinear analysis of large-scale finite element meshes through the use of hybrid modeling (HYMOD)", Int. J. Mech, 11(2017), 218-225.
- Markou, G., Mourlas, C., Bark, H. and Papadrakakis, M. (2018), "Simplified HYMOD nonlinear simulations of a full-scale multistory retrofitted RC structure that undergoes multiple cyclic excitations-an infill RC wall retrofitting study", Eng. Struct., 176(2018), 892-916. https://doi.org/10.1016/j.engstruct.2018.08.002.
- Markou, G., Mourlas, C., Reyes, G., Pilakoutas, K. and Papadrakakis, M. (2019), "Cyclic nonlinear modeling of severely damaged and retrofitted reinforced concrete structures", 7th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Crete, June.
- Menegotto, M. and Pinto, P.E. (1973), "Method of analysis for cyclically loaded reinforced concrete plane frames including changes in geometry and non-elastic behavior of elements under combined normal force and bending", Proceedings, IABSE Symposium on Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads, Lisbon, April.
- Mourlas, C., Markou, G. and Papadrakakis, M. (2017a), "Accurate and computationally efficient nonlinear static and dynamic analysis of reinforced concrete structures considering damage factors", Eng. Struct., 178(2019), 258-285. https://doi.org/10.1016/j.engstruct.2018.10.034.
- Mourlas, C., Markou, G. and Papadrakakis, M. (2019), "3D detailed modeling of reinforced concrete frames considering accumulated damage during static cyclic and dynamic analysis new validation case studies", 7th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Crete, June.
- Mourlas, C., Papadrakakis, M. and Markou G. (2017b), "A computationally efficient model for the cyclic behavior of reinforced concrete structural members", Eng. Struct., 141(2017), 97-125. https://doi.org/10.1016/j.engstruct.2017.03.012.
- Olden, J.D. and Jackson, D.A. (2002), "Illuminating the 'black box': A randomization approach for understanding variable contributions in artificial neural networks", Ecol. Model., 154(1), 135-150. https://doi.org/10.1016/S0304-3800(02)00064-9.
- Oreta, A.W.C. (2004), "Simulating size effect on shear strength of RC beams without stirrups using neural networks", Eng. Struct., 26(5), 681-691. https://doi.org/10.1016/j.engstruct.2004.01.009.
- Perez, J.L., Cladera, A., Rabunal, J.R. and Martinez-Abella, F. (2012), "Optimization of existing equations using a new genetic programming algorithm: Application to the shear strength of reinforced concrete beams", Adv. Eng. Soft., 50, 82-96. https://doi.org/10.1016/j.advengsoft.2012.02.008.
- Plevris, V., Bakas, N., Markeset, G. and Bellos, J. (2017), "Literature review of masonry structures under earthquake excitation utilizing machine learning algorithms", 6th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA), Athens, June.
- Prem, P., Thirumalaiselvi, A. and Verma, M., (2019), "Applied linear and nonlinear statistical models for evaluating strength of geopolymer concrete", Comput. Concrete, 24(1), 7-17. https://doi.org/10.12989/cac.2019.24.1.007.
- Rahal, K.N. and Kiefa, M. (1999), "Neural networks for calculation of shear strength of reinforced concrete beams", Kuwait J. Sci. Eng., 26(2), 239-251.
- Reconan, F.E.A. (2010), v1. 00., Finite Element Analysis Software Manual.
- Reineck, K.H., Bentz, E.C., Fitik, B., Kuchma, D.A. and Bayrak, O. (2013), "ACI-DAFSTB database of shear tests on slender reinforced concrete beams without stirrups", ACI Struct. J., 110(5).
- Sadeghi, B. (2013), Decisiontree.jl.
- Seleemah, A.A. (2005), "A neural network model for predicting maximum shear capacity of concrete beams without transverse reinforcement", Can. J. Civil Eng., 32(4), 644-657. https://doi.org/10.1139/l05-003.
- Szymanowski, M. and Kryza, M. (2012), "Local regression models for spatial interpolation of urban heat Islandan example from Wroclaw, SW Poland", Theor. Appl. Climatology, 108(1-2), 53-71. https://doi.org/10.1007/s00704-011-0517-6.
- Tsai, H.C. and Liao, M.C. (2019), "Knowledge-based learning for modeling concrete compressive strength using genetic programming", Comput. Concrete, 23(4), 255-265. https://doi.org/10.12989/cac.2019.23.4.255.
- Willam, K.J. (1975), "Constitutive model for the triaxial behaviour of concrete", Proc. Intl. Assoc. Bridge Struct. Engrs, 19, 1-30.
- Xu, B. and Chen, T. (2014), Xgboost.jl.
- Yavuz, G. (2019), "Determining the shear strength of FRP-RC beams using soft computing and code methods", Comput. Concrete, 23(1), 49-60. https://doi.org/10.12989/cac.2019.23.1.049.
- Young, W.A., Weckman, G.R., Brown, M.D. and Thompson, J. (2008), "Extracting knowledge of concrete shear strength from artificial neural networks", Int. J. Indust. Eng. Theor. Appl. Pract., 15(1), 26-35.