DOI QR코드

DOI QR Code

Computer visualization approach for rotating FG shell: Assessment with ring supports

  • Al Thobiani, Faisal (Marine Engineering Department, Faculty of Maritime Studie, King Abdulaziz University) ;
  • Khadimallah, Mohamed A. (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department) ;
  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad) ;
  • Mohamed, Gar Al-Nabi Ibrahim (Hydrographic Surveying Department Faculty of MaritimesStudies) ;
  • Ghandourah, Emad (Department of Nuclear Engineering, Faculty of Engineering, King Abdulaziz University)
  • 투고 : 2020.06.24
  • 심사 : 2021.12.07
  • 발행 : 2021.12.25

초록

In this paper, frequency analysis has been done for functionally graded cylindrical shell with ring supports using Sander's shell theory. The vibrations of rotating cylindrical shells are analyzed for different physical factors. The fundamental natural frequency is investigated for different parameters such as: ratios of length-to-diameter ring supports. By increasing different value of height-to-radius ratio, the resulting backward and forward frequencies increase and frequencies decrease on increasing height-to-radius ratio. The frequencies for different position of ring supports are obtained in the form of bell shaped. The backward frequencies increases and forward frequencies decrease on increasing the rotating speed. The results generated furnish the evidence regarding applicability of present shell model and also verified by earlier published literature.

키워드

과제정보

This research work was supported by the Deanship of Scientific Research at King Abdul Aziz University under Grant number G:136-980-1439.

참고문헌

  1. Ahmad, M. and Naeem, M.N. (2009), "Vibration characteristics of rotating FGM circular cylindrical shell using wave propagation method", Eur. J. Sci. Res., 36(2), 184-235.
  2. Love, A.E.H. (1888), "XVI. The small free vibrations and deformation of a thin elastic shell", Phil. Trans. Royal Soc. London, 179, 491-546. https://doi.org/10.1098/rsta.1888.0016.
  3. Arefi, M. (2018), "Nonlocal free vibration analysis of a doubly curved piezoelectric nano shell", Steel Compos. Struct., 27(4), 479-493. https://doi.org/10.12989/scs.2018.27.4.479.
  4. Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S. and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., 7(6), 443. https://doi.org/10.12989/anr.2019.7.6.443.
  5. Bryan, G.H. (1890), "On the beats in the vibration of revolving cylinder", Proc. Camb. Phil. Soc., 7, 101-111.
  6. Chen, Y., Zhao, H.B. and Shin, Z.P. (1993), "Vibration of high speed rotating shells with calculation for cylindrical shells", J. Sound Vib., 160, 137. https://doi.org/10.1006/jsvi.1993.1010.
  7. Chung, H., Turula, P. Mulcahy, T.M. and Jendrzejczyk, J.A. (1981), "Analysis of cylindrical shell vibrating in a cylindrical fluid region", Nucl. Eng. Des., 63(1), 109-1012. https://doi.org/10.1016/0029-5493(81)90020-0.
  8. Civalek, O ., Demir, C . and Akgoz, B. (2010), "Free vibration and bending analyses of cantilever microtubules based on nonlocal continuum model", Math. Comput. Appl., 15(2), 289-298. https://doi.org/10.3390/mca15020289.
  9. Civera, M., Grivet-Talocia, S., Surace, C. and Fragonara, L.Z. (2021), "A generalised power-law formulation for the modelling of damping and stiffness nonlinearities", Mech. Syst. Signal Proc., 153, 107531. https://doi.org/10.1016/j.ymssp.2020.107531.
  10. Di Taranto, R.A. and Lessen, M. (1964), "Coriolis acceleration effect on the vibration of rotating thin-walled circular cylinder", Trans. ASME J. Appl. Mech., 31, 700-701. https://doi.org/10.1115/1.3629733.
  11. Ergin, A. and Temarel, P. (2002), "Free vibration of a partially liquid-filled and submerged, horizontal cylindrical shell", J. Sound Vib., 254(5), 951-965. https://doi.org/10.1006/jsvi.2001.4139.
  12. Fox, C.H.J. and Hardie, D.J.W. (1985), "Harmonic response of rotating cylindrical shell", J. Sound Vib., 101, 495. https://doi.org/10.1016/S0022-460X(85)80067-5.
  13. Ghosh, A., Miyamoto, Y., Reimanis, I. and Lannutti, J.J. (1997), "Functionally graded materials, manufacture, properties and applications", Am. Ceram. Soc., 76, 171-89.
  14. Karami, B., Janghorban, M. and Tounsi, A. (2018), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.201.
  15. Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., 25(3), 361-374. https://doi.org/10.12989/scs.2017.25.3.361.
  16. Koizumi, M.F.G.M. (1997), "FGM activities in Japan", Compos. Part B Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.
  17. Lam, K.Y. and Loy, C.T. (1994), "On vibration of thin rotating laminated composite cylindrical shells", J. Sound Vib., 116, 198. https://doi.org/10.1016/0961-9526(95)91289-S.
  18. Li, H. and Lam, K.Y. (1998), "Frequency characteristics of a thin rotating cylindrical shell using the generalized differential quadrature method", Int. J. Mech. Sci., 40(5), 443-459. https://doi.org/10.1016/S0020-7403(97)00057-X.
  19. Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889.
  20. Mehar, K. and Panda, S.K. (2018c), "Elastic bending and stress analysis of carbon nanotube-reinforced composite plate: Experimental, numerical, and simulation", Adv. Polym. Tech., 37(6), 1643-1657. https://doi.org/10.1002/adv.21821.
  21. Mehar, K. and Panda, S.K. (2018d), "Thermoelastic flexural analysis of FG-CNT doubly curved shell panel", Aircraft Eng. Aerosp. Tech., 90(1), 11-23. https://doi.org/10.1108/AEAT-11-2015-0237.
  22. Mehar, K. and Kumar Panda, S. (2018b), "Thermal free vibration behavior of FG-CNT reinforced sandwich curved panel using finite element method", Polym. Compos., 39(8), 2751-2764. https://doi.org/10.1002/pc.24266.
  23. Mehar, K. and Panda, S.K. (2016a), "Geometrical nonlinear free vibration analysis of FG-CNT reinforced composite flat panel under uniform thermal field", Compos. Struct., 143, 336-346. https://doi.org/10.1016/j.compstruct.2016.02.038.
  24. Mehar, K. and Panda, S.K. (2016b), "Free vibration and bending behaviour of CNT reinforced composite plate using different shear deformation theory", IOP Conf. Ser. Mater. Sci. Eng., 115(1), 012014. https://doi.org/10.1088/1757-899X/115/1/012014
  25. Mehar, K. and Panda, S.K. (2018a), "Dynamic response of functionally graded carbon nanotube reinforced sandwich plate", IOP Conf. Ser. Mater. Sci. Eng., 338(1), 012017. https://doi.org/10.1088/1757-899X/338/1/012017
  26. Mehar, K. and Panda, S.K. (2018e), "Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure", Struct. Eng. Mech., 67(6), 565-578. https://doi.org/10.12989/sem.2018.67.6.565.
  27. Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181. https://doi.org/10.12989/anr.2019.7.3.181.
  28. Mehar, K., Mahapatra, T.R., Panda, S.K., Katariya, P.V. and Tompe, U.K. (2018a), "Finite-element solution to nonlocal elasticity and scale effect on frequency behavior of shear deformable nanoplate structure", J. Eng. Mech., 144(9), 04018094. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001519.
  29. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2018b), "Thermoelastic deflection responses of CNT reinforced sandwich shell structure using finite element method", Sci. Iran., 25(5), 2722-2737. https://doi.org/10.24200/SCI.2017.4525.
  30. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017a), "Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure", Eur. J. Mech. A Solid., 65, 384-396. https://doi.org/10.1016/j.euromechsol.2017.05.005.
  31. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017c), "Theoretical and experimental investigation of vibration characteristic of carbon nanotube reinforced polymer composite structure", Int. J. Mech. Sci., 133, 319-329. https://doi.org/10.1016/j.ijmecsci.2017.08.057.
  32. Mehar, K., Panda, S.K. and Patle, B.K. (2017d), "Thermoelastic vibration and flexural behavior of FG-CNT reinforced composite curved panel", Int. J. Appl. Mech., 9(4), 1750046. https://doi.org/10.1142/S1758825117500466.
  33. Mehar, K., Panda, S.K. and Patle, B.K. (2018c), "Stress, deflection, and frequency analysis of CNT reinforced graded sandwich plate under uniform and linear thermal environment: A finite element approach", Polym. Compos., 39(10), 3792-3809. https://doi.org/10.1002/pc.24409.
  34. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2018d), "Nonlinear frequency responses of functionally graded carbon nanotube-reinforced sandwich curved panel under uniform temperature field", Int. J. Appl. Mech., 10(3), 1850028. https://doi.org/10.1142/S175882511850028X.
  35. Mehar, K., Panda, S.K., Bui, T.Q. and Mahapatra, T.R. (2017b), "Nonlinear thermoelastic frequency analysis of functionally graded CNT-reinforced single/doubly curved shallow shell panels by FEM", J. Therm. Stress., 40(7), 899-916. https://doi.org/10.1080/01495739.2017.1318689.
  36. Mehar, K., Panda, S.K., Dehengia, A. and Kar, V.R. (2016), "Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment", J. Sandwich Struct. Mater., 18(2), 151-173. https://doi.org/10.1177/1099636215613324.
  37. Mehar, K., Panda, S.K., Devarajan, Y. and Choubey, G. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002.
  38. Najafizadeh, M.M. and Isvandzibaei, M.R. (2007), "Vibration of (FGM) cylindrical shells based on higher order shear deformation plate theory with ring support", Acta Mech., 191, 75-91. http/10.1007/s00707-006-0438-0.
  39. Padovan, J. (1975), "Travelling waves vibrations and buckling of rotating anisotropic shells of revolution by finite element", Int. J. Solid Struct., 11(12), 1367-1380. https://doi.org/10.1016/0020-7683(75)90064-5.
  40. Penzes, L.E. and Kraus, H. (1972), "Free vibrations of pre-stresses cylindrical shells having arbitrary homogeneous boundary conditions", AIAA J., 10, 1309. https://doi.org/10.2514/3.6605.
  41. Saito, T. and Endo, M. (1986), "Vibrations of finite length rotating cylindrical shell", J. Sound Vib., 107, 17. https://doi.org/10.1016/0022-460X(86)90279-8.
  42. Sewall, J.L. and Naumann, E.C. (1968), An Experimental and Analytical Vibration Study of Thin Cylindrical Shells with and without Longitudinal Stiffeners, National Aeronautic and Space Administration.
  43. Sharma, P., Singh, R. and Hussin, H, (2019), "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 234(5), 1085-1101. https://doi.org/10.1177/0954406219888234.
  44. Simsek, M. (2011), "Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059.
  45. Sivadas, K.R. and Ganesan, N. (1964), "Effect of rotation on vibrations of moderately thin cylindrical shell", J. Vib. Acoust., 116(1), 198-202. https://doi.org/10.1115/1.2930412.
  46. Sofiyev, A.H., Avcar, M., Ozyigit, P. and Adigozel, S. (2009), "The free vibration of non-homogeneous truncated conical shells on a Winkler foundation", Int. J. Eng. Appl. Sci., 1(1), 34-41.
  47. Sofiyev, A.H., Yucel, K., Avcar, M. and Zerin, Z. (2006), "The dynamic stability of orthotropic cylindrical shells with non-homogenous material properties under axial compressive load varying as a parabolic function of time", J. Reinf. Plas. Compos., 25(18), 1877-1886. https://doi.org/10.1177/0731684406069914.
  48. Srinivasan, A.V. and Luaterbach, G.F. (1971), "Travelling waves in rotating cylindrical shells", Trans. ASME J. Eng. Ind., 93, 1229-1232. https://doi.org/10.1115/1.3428067.
  49. Suresh, S. and Mortensen, A. (1997), "Functionally gradient metals and metal ceramic composites: Part 2 Thermomechanical behavior", Int. Mater, 42, 85-116. https://doi.org/10.1179/imr.1997.42.3.85.
  50. Swaddiwudhipong. S, Tian, J. and Wang, C.M. (1995), "Vibration of cylindrical shells with ring supports", J. Sound Vib., 187(1), 69-93. https://doi.org/10.1006/jsvi.1995.0503.
  51. Tohidi, H., Hosseini-Hashemi, S.H., Maghsoudpour, A. and Etemadi, S. (2017), "Dynamic stability of FG-CNT-reinforced viscoelastic micro cylindrical shells resting on nonhomogeneous orthotropic viscoelastic medium subjected to harmonic temperature distribution and 2D magnetic field", Wind Struct., 25(2), 131-156. https://doi.org/10.12989/was.2017.25.2.131.
  52. Wang, S.S. and Chen, Y. (1974), "Effects of rotation on vibrations of circular cylindrical shells", J. Acoust. Soc. Am., 55, 1340-1342. https://doi.org/10.1121/1.1914708.
  53. Zohar, A. and Aboudi, J. (1973), "The free vibrations of thin circular finite rotating cylinder", Int. J. Mech. Sci., 15, 269-278. https://doi.org/10.1016/0020-7403(73)90009-X.