참고문헌
- Abd-Elaal, E.S., Araby, S., Mills, J.E., Youssf, O., Roychand, R., Ma, X. and Gravina, R.J. (2019), "Novel approach to improve crumb rubber concrete strength using thermal treatment", Constr. Build. Mater., 229, 116901. https://doi.org/10.1016/j.conbuildmat.2019.116901.
- Abdollahzadeh, A., Masoudnia, R. and Aghababaei, S. (2011), "Predict strength of rubberized concrete using atrificial neural network", WSEAS Transac. Comput., 10(2), 31-40.
- Al-Tayeb, M.M., Bakar, B.A., Ismail, H. and Akil, H.M. (2013), "Effect of partial replacement of sand by recycled fine crumb rubber on the performance of hybrid rubberized-normal concrete under impact load: experiment and simulation", J. Clean. Prod., 59, 284-289. https://doi.org/10.1016/j.jclepro.2013.04.026.
- Ashteyat, A.M. and Ismeik, M. (2018), "Predicting residual compressive strength of self-compacted concrete under various temperatures and relative humidity conditions by artificial neural networks", Comput. Concrete, 21(1), 47-54. https://doi.org/10.12989/cac.2018.21.1.047.
- Bala, A., Sehgal, V.K. and Saini, B. (2014), "Effect of fly ash and waste rubber on properties of concrete composite", Concrete Res. Lett., 5(3), 842-857.
- Balaha, M.M., Badawy, A.A.M. and Hashish, M. (2007), "Effect of using ground waste tire rubber as fine aggregate on the behaviour of concrete mixes", Ind. J. Eng. Mater. Sci., 14(6), 427-435.
- Batayneh, M.K., Marie, I. and Asi, I. (2008), "Promoting the use of crumb rubber concrete in developing countries", Waste Manag., 28(11), 2171-2176. https://doi.org/10.1016/j.wasman.2007.09.035.
- Behnood, A. and Golafshani, E.M. (2018), "Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multi-objective grey wolves", J. Clean. Prod., 202, 54-64. https://doi.org/10.1016/j.jclepro.2018.08.065.
- Bompa, D.V., Elghazouli, A.Y., Xu, B., Stafford, P.J. and Ruiz-Teran, A.M. (2017), "Experimental assessment and constitutive modelling of rubberised concrete materials", Constr. Build. Mater., 137, 246-260. https://doi.org/10.1016/j.conbuildmat.2017.01.086.
- Carroll, J.C. and Helminger, N. (2016), "Fresh and hardened properties of fiber-reinforced rubber concrete", J. Mater. Civil Eng., 28(7), 04016027. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001541.
- Diab, A.M., Elyamany, H.E., Abd Elmoaty, M. and Shalan, A.H. (2014), "Prediction of concrete compressive strength due to long term sulfate attack using neural network", Alexandria Eng. J., 53(3), 627-642. https://doi.org/10.1016/j.aej.2014.04.002.
- Eldin, N.N. and Senouci, A.B. (1993), "Rubber-tire particles as concrete aggregate", J. Mater. Civil Eng., 5(4), 478-496. https://doi.org/10.1061/(ASCE)0899-1561(1993)5:4(478).
- Fattuhi, N.I. and Clark, L.A. (1996), "Cement-based materials containing shredded scrap truck tyre rubber", Constr. Build. Mater., 10(4), 229-236. https://doi.org/10.1016/0950-0618(96)00004-9.
- Feng, W., Liu, F., Yang, F., Li, L. and Jing, L. (2018), "Experimental study on dynamic split tensile properties of rubber concrete", Constr. Build. Mater., 165, 675-687. https://doi.org/10.1016/j.conbuildmat.2018.01.073.
- Feng, W., Liu, F., Yang, F., Li, L., Jing, L., Chen, B. and Yuan, B. (2019), "Experimental study on the effect of strain rates on the dynamic flexural properties of rubber concrete", Constr. Build. Mater., 224, 408-419. https://doi.org/10.1016/j.conbuildmat.2019.07.084.
- Flores-Medina, D., Medina, N.F. and Hernandez-Olivares, F. (2014), "Static mechanical properties of waste rests of recycled rubber and high quality recycled rubber from crumbed tyres used as aggregate in dry consistency concretes", Mater. Struct., 47(7), 1185-1193. https://doi.org/10.1617/s11527-013-0121-6.
- Gesoglu, M. and Guneyisi, E. (2007), "Strength development and chloride penetration in rubberized concretes with and without silica fume", Mater. Struct., 40(9), 953-964. https://doi.org/10.1617/s11527-007-9279-0.
- Gesoglu, M., Giineyisi, E. and Ozturan, T. (2005), "Use of recycled tyre rubber as aggregates in silica fume concrete", Achieving Sustainability in Construction: Proceedings of the International Conference Held at the University of Dundee, Scotland, UK, July.
- Gesoglu, M., Guneyisi, E., Hansu, O., Ipek, S. and Asaad, D.S. (2015), "Influence of waste rubber utilization on the fracture and steel-concrete bond strength properties of concrete", Constr. Build. Mater., 101, 1113-1121. https://doi.org/10.1016/j.conbuildmat.2015.10.030.
- Gesoglu, M., Guneyisi, E., O zturan, T. and O zbay, E. (2010), "Modeling the mechanical properties of rubberized concretes by neural network and genetic programming", Mater. Struct., 43(1), 31-45. https://doi.org/10.1617/s11527-009-9468-0.
- Golafshani, E.M. and Behnood, A. (2018), "Application of soft computing methods for predicting the elastic modulus of recycled aggregate concrete", J. Clean. Prod., 176, 1163-1176. https://doi.org/10.1016/j.jclepro.2017.11.186.
- Golafshani, E.M. and Behnood, A. (2018), "Application of soft computing methods for predicting the elastic modulus of recycled aggregate concrete", J. Clean. Prod., 176, 1163-1176. https://doi.org/10.1016/j.jclepro.2017.11.186.
- Golafshani, E.M. and Behnood, A. (2019), "Estimating the optimal mix design of silica fume concrete using biogeography-based programming", Cement Concrete Compos., 96, 95-105. https://doi.org/10.1016/j.cemconcomp.2018.11.005.
- Golafshani, E.M. and Pazouki, G. (2018), "Predicting the compressive strength of self-compacting concrete containing fly ash using a hybrid artificial intelligence method", Comput. Concrete, 22(4), 419-437. https://doi.org/10.12989/cac.2018.22.4.419.
- Golafshani, E.M., Behnood, A. and Arashpour, M. (2020), "Predicting the compressive strength of normal and high-performance concretes using ANN and ANFIS hybridized with grey wolf optimizer", Constr. Build. Mater., 232, 117266. https://doi.org/10.1016/j.conbuildmat.2019.117266.
- Grdic, Z., Toplicic-Curcic, G., Ristic, N., Grdic, D. and Mitkovic, P. (2014), "Hydro-abrasive resistance and mechanical properties of rubberized concrete", Gradevinar, 66(1), 11-20. https://doi.org/10.14256/jce.910.2013.
- Gregori, A., Castoro, C., Marano, G.C. and Greco, R. (2019), "Strength reduction factor of concrete with recycled rubber aggregates from tires", J. Mater. Civil Eng., 31(8), 04019146. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002783.
- Guneyisi, E., Gesoglu, M. and O zturan, T. (2004), "Properties of rubberized concretes containing silica fume", Cement Concrete Res., 34(12), 2309-2317. https://doi.org/10.1016/j.cemconres.2004.04.005.
- Guneyisi, E., Gesoglu, M. and O zturan, T. (2004), "Properties of rubberized concretes containing silica fume", Cement Concrete Res., 34(12), 2309-2317. https://doi.org/10.1016/j.cemconres.2004.04.005.
- Gupta, T., Patel, K.A., Siddique, S., Sharma, R.K. and Chaudhary, S. (2019), "Prediction of mechanical properties of rubberised concrete exposed to elevated temperature using ANN", Meas., 147, 106870. https://doi.org/10.1016/j.measurement.2019.106870.
- Hadzima-Nyarko, M., Nyarko, E.K., Ademovic, N., Milicevic, I. and Kalman Sipos, T. (2019), "Modelling the influence of waste rubber on compressive strength of concrete by artificial neural networks", Mater., 12(4), 561. https://doi.org/10.3390/ma12040561.
- Hagan, M.T. and Menhaj, M.B. (1994), "Training feedforward networks with the Marquardt algorithm", IEEE Trans. Neural Network., 5(6), 989-993. https://doi.org/10.1109/72.329697.
- Hiremath, P.N., Jayakesh, K., Rai, R., Raghavendra, N.S. and Yaragal, S.C. (2019), "Experimental investigation on utilization of waste shredded rubber tire as a replacement to fine aggregate in concrete", Sustain. Constr. Build. Mater., 561-569. https://doi.org/10.1007/978-981-13-3317-0_49.
- Holmes, N., Browne, A. and Montague, C. (2014), "Acoustic properties of concrete panels with crumb rubber as a fine aggregate replacement", Constr. Build. Mater., 73, 195-204. https://doi.org/10.1016/j.conbuildmat.2014.09.107.
- Jalal, M., Arabali, P., Grasley, Z., Bullard, J.W. and Jalal, H. (2020), "Behavior assessment, regression analysis and support vector machine (SVM) modeling of waste tire rubberized concrete", J. Clean. Prod., 273, 122960. https://doi.org/10.1016/j.jclepro.2020.122960.
- Jalal, M., Grasley, Z., Gurganus, C. and Bullard, J.W. (2020), "Experimental investigation and comparative machine-learning prediction of strength behavior of optimized recycled rubber concrete", Constr. Build. Mater., 256, 119478. https://doi.org/10.1016/j.conbuildmat.2020.119478.
- Jalal, M., Grasley, Z., Nassir, N. and Jalal, H. (2020), "Strength and dynamic elasticity modulus of rubberized concrete designed with ANFIS modeling and ultrasonic technique", Constr. Build. Mater., 240, 117920. https://doi.org/10.1016/j.conbuildmat.2019.117920.
- Jokar, F., Khorram, M., Karimi, G. and Hataf, N. (2019), "Experimental investigation of mechanical properties of crumbed rubber concrete containing natural zeolite", Constr. Build. Mater., 208, 651-658. https://doi.org/10.1016/j.conbuildmat.2019.03.063.
- Kandiri, A., Golafshani, E.M. and Behnood, A. (2020), "Estimation of the compressive strength of concretes containing ground granulated blast furnace slag using hybridized multi-objective ANN and salp swarm algorithm", Constr. Build. Mater., 248, 118676. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2020.118676.
- Khaloo, A.R., Dehestani, M. and Rahmatabadi, P. (2008), "Mechanical properties of concrete containing a high volume of tire-rubber particles", Waste Manag., 28(12), 2472-2482. https://doi.org/10.1016/j.wasman.2008.01.015.
- Khatib, Z.K. and Bayomy, F.M. (1999), "Rubberized Portland cement concrete", J. Mater. Civil Eng., 11(3), 206-213. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:3(206).
- Li, G., Garrick, G., Eggers, J., Abadie, C., Stubblefield, M.A. and Pang, S.S. (2004), "Waste tire fiber modified concrete", Compos. Part B Eng., 35(4), 305-312. https://doi.org/10.1016/j.compositesb.2004.01.002.
- Li, H.L., Xu, Y., Chen, P.Y., Ge, J.J. and Wu, F. (2019), "Impact energy consumption of high-volume rubber concrete with silica fume", Adv. Civil Eng., 2019, 1728762. https://doi.org/10.1155/2019/1728762.
- Li, Y., Zhang, X., Wang, R. and Lei, Y. (2019), "Performance enhancement of rubberised concrete via surface modification of rubber: A review", Constr. Build. Mater., 227, 116691. https://doi.org/10.1016/j.conbuildmat.2019.116691.
- Mazloom, M., Tajar, S.F. and Mahboubi, F. (2020), "Long-term quality control of self-compacting semi-lightweight concrete using short-term compressive strength and combinatorial artificial neural networks", Comput. Concrete, 25(5), 401-409. https://doi.org/10.12989/cac.2020.25.5.401.
- Mendis, A.S., Al-Deen, S. and Ashraf, M. (2017), "Behaviour of similar strength crumbed rubber concrete (CRC) mixes with different mix proportions", Constr. Build. Mater., 137, 354-366. https://doi.org/10.1016/j.conbuildmat.2017.01.125.
- Mohammadi, I., Khabbaz, H. and Vessalas, K. (2014), "In-depth assessment of Crumb Rubber Concrete (CRC) prepared by water-soaking treatment method for rigid pavements", Constr. Build. Mater., 71, 456-471. https://doi.org/10.1016/j.conbuildmat.2014.08.085.
- Mohammed, B.S. and Azmi, N.J. (2014), "Strength reduction factors for structural rubbercrete", Frontier. Struct. Civil Eng., 8(3), 270-281. https://doi.org/10.1007/s11709-014-0265-7.
- Nguyen, T.N., Yu, Y., Li, J., Gowripalan, N. and Sirivivatnanon, V. (2019), "Elastic modulus of ASR-affected concrete: An evaluation using artificial neural network", Comput. Concrete., 24(6), 541-553. https://doi.org/10.12989/cac.2019.24.6.541.
- Nielsen, M.P. and Hoang, L.C. (2016), Limit Analysis and Concrete Plasticity, Third Edition.
- Noaman, A.T., Bakar, B.A., Akil, H.M. and Alani, A.H. (2017), "Fracture characteristics of plain and steel fibre reinforced rubberized concrete", Constr. Build. Mater., 152, 414-423. https://doi.org/10.1016/j.conbuildmat.2017.06.127.
- Ozbay, E., Lachemi, M. and Sevim, U.K. (2011), "Compressive strength, abrasion resistance and energy absorption capacity of rubberized concretes with and without slag", Mater. Struct., 44(7), 1297-1307. https://doi.org/10.1617/s11527-010-9701-x.
- Pelisser, F., Zavarise, N., Longo, T.A. and Bernardin, A.M. (2011), "Concrete made with recycled tire rubber: effect of alkaline activation and silica fume addition", J. Clean. Prod., 19(6-7), 757-763. https://doi.org/10.1016/j.jclepro.2010.11.014.
- Pham, T.M., Elchalakani, M., Hao, H., Lai, J., Ameduri, S. and Tran, T.M. (2019), "Durability characteristics of lightweight rubberized concrete", Constr. Build. Mater., 224, 584-599. https://doi.org/10.1016/j.conbuildmat.2019.07.048.
- Reda Taha, M.M., El-Dieb, A.S., Abd El-Wahab, M.A. and Abdel-Hameed, M.E. (2008), "Mechanical, fracture, and microstructural investigations of rubber concrete", J. Mater. Civil Eng., 20(10), 640-649. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:10(640).
- Saha, P., Prasad, M.L.V. and RathishKumar, P. (2017), "Predicting strength of SCC using artificial neural network and multivariable regression analysis", Comput. Concrete, 20(1), 31-38. https://doi.org/10.12989/cac.2017.20.1.031.
- Samarakoon, S.S.M., Ruben, P., Pedersen, J.W. and Evangelista, L. (2019), "Mechanical performance of concrete made of steel fibers from tire waste", Case Stud. Constr. Mater., 11, e00259. https://doi.org/10.1016/j.cscm.2019.e00259.
- Sgobba, S., Borsa, M., Molfetta, M. and Marano, G.C. (2015), "Mechanical performance and medium-term degradation of rubberised concrete", Constr. Build. Mater., 98, 820-831. https://doi.org/10.1016/j.conbuildmat.2015.07.095.
- Siddika, A., Al Mamun, M.A., Alyousef, R., Amran, Y.M., Aslani, F. and Alabduljabbar, H. (2019), "Properties and utilizations of waste tire rubber in concrete: A review", Constr. Build. Mater., 224, 711-731. https://doi.org/10.1016/j.conbuildmat.2019.07.108.
- Siddique, R. and Naik, T.R. (2004), "Properties of concrete containing scrap-tire rubber-an overview", Waste Manag., 24(6), 563-569. https://doi.org/10.1016/j.wasman.2004.01.006.
- Stallings, K.A., Durham, S.A. and Chorzepa, M.G. (2019), "Effect of cement content and recycled rubber particle size on the performance of rubber-modified concrete", Int. J. Sustain. Eng., 12(3), 189-200. https://doi.org/10.1080/19397038.2018.1505971.
- Sukontasukkul, P. and Tiamlom, K. (2012), "Expansion under water and drying shrinkage of rubberized concrete mixed with crumb rubber with different size", Constr. Build. Mater., 29, 520-526. https://doi.org/10.1016/j.conbuildmat.2011.07.032.
- Takagi, T. and Sugeno, M. (1985), "Fuzzy identification of systems and its applications to modeling and control", IEEE Transac. Syst. Man Cybernetics, SMC-15(1), 116-132. https://doi.org/10.1109/TSMC.1985.6313399
- Thomas, B.S. and Gupta, R.C. (2015), "Long term behaviour of cement concrete containing discarded tire rubber", J. Clean. Prod., 102, 78-87. https://doi.org/10.1016/j.jclepro.2015.04.072.
- Thomas, B.S. and Gupta, R.C. (2016), "A comprehensive review on the applications of waste tire rubber in cement concrete", Renew. Sustain. Ener. Rev., 54, 1323-1333. https://doi.org/10.1016/j.rser.2015.10.092.
- Thomas, B.S. and Gupta, R.C. (2016), "Properties of high strength concrete containing scrap tire rubber", J. Clean. Prod., 113, 86-92. https://doi.org/10.1016/j.jclepro.2015.11.019.
- Thomas, B.S., Gupta, R.C., Kalla, P. and Cseteneyi, L. (2014), "Strength, abrasion and permeation characteristics of cement concrete containing discarded rubber fine aggregates", Constr. Build. Mater., 59, 204-212. https://doi.org/10.1016/j.conbuildmat.2014.01.074.
- Toma, I.O., Taranu, N., Banu, O.M., Budescu, M., Mihai, P. and Taran, R.G. (2015), "The effect of the aggregate replacement by waste tyre rubber crumbs on the mechanical properties of concrete", Revista Romana Mater. Roma. J. Mater., 45(4), 394-401.
- Topcu, I.B. and Saridemir, M. (2008), "Prediction of rubberized concrete properties using artificial neural network and fuzzy logic", Constr. Build. Mater., 22(4), 532-540. https://doi.org/10.1016/j.conbuildmat.2006.11.007.
- Vahidi, E.K., Malekabadi, M.M., Rezaei, A., Roshani, M.M. and Roshani, G.H. (2017), "Modelling of mechanical properties of roller compacted concrete containing RHA using ANFIS", Comput. Concrete, 19(4), 435-442. https://doi.org/10.12989/cac.2017.19.4.435.
- Wong, S.F. and Ting, S.K. (2009), "Use of recycled rubber tires in normal-and high-strength concretes", ACI Mater. J., 106(4), 325. https://doi.org/10.14359/56652.
- Xie, Y., Su, X.R., Wang, H.X., Luo, D.M. and Zhou, Y.L. (2019), "Experimental analysis of the toughness mechanism of rubber concrete", IOP Confer. Ser. Mater. Sci. Eng., 504(1), 012041. https://doi.org/10.1088/1757-899X/504/1/012041.
- Yaman, M.A., Abd Elaty, M. and Taman, M. (2017), "Predicting the ingredients of self compacting concrete using artificial neural network", Alexandria Eng. J., 56(4), 523-532. https://doi.org/10.1016/j.aej.2017.04.007.
- Youssf, O., ElGawady, M.A., Mills, J.E. and Ma, X. (2014), "An experimental investigation of crumb rubber concrete confined by fibre reinforced polymer tubes", Constr. Build. Mater., 53, 522-532. https://doi.org/10.1016/j.conbuildmat.2013.12.007.
- Youssf, O., ElGawady, M.A., Mills, J.E. and Ma, X. (2017), "Analytical modeling of the main characteristics of crumb rubber concrete", ACI Spec. Publ., 314, 1-18.
- Zaleska, M., Pavlik, Z., Citek, D., Jankovsky, O. and Pavlikova, M. (2019), "Eco-friendly concrete with scrap-tyre-rubber-based aggregate-Properties and thermal stability", Constr. Build. Mater., 225, 709-722. https://doi.org/10.1016/j.conbuildmat.2019.07.168.