DOI QR코드

DOI QR Code

Modeling the mechanical properties of rubberized concrete using machine learning methods

  • Miladirad, Kaveh (Department of Civil Engineering, Science and Research Branch, Islamic Azad University) ;
  • Golafshani, Emadaldin Mohammadi (Department of Civil Engineering, Monash University) ;
  • Safehian, Majid (Department of Civil Engineering, Science and Research Branch, Islamic Azad University) ;
  • Sarkar, Alireza (Department of Civil Engineering, Science and Research Branch, Islamic Azad University)
  • 투고 : 2020.11.08
  • 심사 : 2021.12.17
  • 발행 : 2021.12.25

초록

The use of waste materials as a binder or aggregate in the concrete mixture is a great step towards sustainability in the construction industry. Waste rubber (WR) can be used as coarse and fine aggregates in concrete and improves the crack resistance, impact resistance, and fatigue life of the produced concrete. However, the mechanical properties of rubberized concrete degrade significantly by replacing the natural aggregate with WR. To have accurate estimations of the mechanical properties of rubberized concrete, two machine learning methods consisting of artificial neural network (ANN) and neuro-fuzzy system (NFS) were served in this study. To do this, a comprehensive dataset was collected from reliable literature, and two scenarios were addressed for the selection of input variables. In the first scenario, the critical ratios of the rubberized concrete and the concrete age were considered as the input variables. In contrast, the mechanical properties of concrete without WR and the percentage of aggregate volume replaced by WR were assumed as the input variables in the second scenario. The results show that the first scenario models outperform the models proposed by the second scenario. Moreover, the developed ANN models are more reliable than the proposed NFS models in most cases.

키워드

참고문헌

  1. Abd-Elaal, E.S., Araby, S., Mills, J.E., Youssf, O., Roychand, R., Ma, X. and Gravina, R.J. (2019), "Novel approach to improve crumb rubber concrete strength using thermal treatment", Constr. Build. Mater., 229, 116901. https://doi.org/10.1016/j.conbuildmat.2019.116901.
  2. Abdollahzadeh, A., Masoudnia, R. and Aghababaei, S. (2011), "Predict strength of rubberized concrete using atrificial neural network", WSEAS Transac. Comput., 10(2), 31-40.
  3. Al-Tayeb, M.M., Bakar, B.A., Ismail, H. and Akil, H.M. (2013), "Effect of partial replacement of sand by recycled fine crumb rubber on the performance of hybrid rubberized-normal concrete under impact load: experiment and simulation", J. Clean. Prod., 59, 284-289. https://doi.org/10.1016/j.jclepro.2013.04.026.
  4. Ashteyat, A.M. and Ismeik, M. (2018), "Predicting residual compressive strength of self-compacted concrete under various temperatures and relative humidity conditions by artificial neural networks", Comput. Concrete, 21(1), 47-54. https://doi.org/10.12989/cac.2018.21.1.047.
  5. Bala, A., Sehgal, V.K. and Saini, B. (2014), "Effect of fly ash and waste rubber on properties of concrete composite", Concrete Res. Lett., 5(3), 842-857.
  6. Balaha, M.M., Badawy, A.A.M. and Hashish, M. (2007), "Effect of using ground waste tire rubber as fine aggregate on the behaviour of concrete mixes", Ind. J. Eng. Mater. Sci., 14(6), 427-435.
  7. Batayneh, M.K., Marie, I. and Asi, I. (2008), "Promoting the use of crumb rubber concrete in developing countries", Waste Manag., 28(11), 2171-2176. https://doi.org/10.1016/j.wasman.2007.09.035.
  8. Behnood, A. and Golafshani, E.M. (2018), "Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multi-objective grey wolves", J. Clean. Prod., 202, 54-64. https://doi.org/10.1016/j.jclepro.2018.08.065.
  9. Bompa, D.V., Elghazouli, A.Y., Xu, B., Stafford, P.J. and Ruiz-Teran, A.M. (2017), "Experimental assessment and constitutive modelling of rubberised concrete materials", Constr. Build. Mater., 137, 246-260. https://doi.org/10.1016/j.conbuildmat.2017.01.086.
  10. Carroll, J.C. and Helminger, N. (2016), "Fresh and hardened properties of fiber-reinforced rubber concrete", J. Mater. Civil Eng., 28(7), 04016027. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001541.
  11. Diab, A.M., Elyamany, H.E., Abd Elmoaty, M. and Shalan, A.H. (2014), "Prediction of concrete compressive strength due to long term sulfate attack using neural network", Alexandria Eng. J., 53(3), 627-642. https://doi.org/10.1016/j.aej.2014.04.002.
  12. Eldin, N.N. and Senouci, A.B. (1993), "Rubber-tire particles as concrete aggregate", J. Mater. Civil Eng., 5(4), 478-496. https://doi.org/10.1061/(ASCE)0899-1561(1993)5:4(478).
  13. Fattuhi, N.I. and Clark, L.A. (1996), "Cement-based materials containing shredded scrap truck tyre rubber", Constr. Build. Mater., 10(4), 229-236. https://doi.org/10.1016/0950-0618(96)00004-9.
  14. Feng, W., Liu, F., Yang, F., Li, L. and Jing, L. (2018), "Experimental study on dynamic split tensile properties of rubber concrete", Constr. Build. Mater., 165, 675-687. https://doi.org/10.1016/j.conbuildmat.2018.01.073.
  15. Feng, W., Liu, F., Yang, F., Li, L., Jing, L., Chen, B. and Yuan, B. (2019), "Experimental study on the effect of strain rates on the dynamic flexural properties of rubber concrete", Constr. Build. Mater., 224, 408-419. https://doi.org/10.1016/j.conbuildmat.2019.07.084.
  16. Flores-Medina, D., Medina, N.F. and Hernandez-Olivares, F. (2014), "Static mechanical properties of waste rests of recycled rubber and high quality recycled rubber from crumbed tyres used as aggregate in dry consistency concretes", Mater. Struct., 47(7), 1185-1193. https://doi.org/10.1617/s11527-013-0121-6.
  17. Gesoglu, M. and Guneyisi, E. (2007), "Strength development and chloride penetration in rubberized concretes with and without silica fume", Mater. Struct., 40(9), 953-964. https://doi.org/10.1617/s11527-007-9279-0.
  18. Gesoglu, M., Giineyisi, E. and Ozturan, T. (2005), "Use of recycled tyre rubber as aggregates in silica fume concrete", Achieving Sustainability in Construction: Proceedings of the International Conference Held at the University of Dundee, Scotland, UK, July.
  19. Gesoglu, M., Guneyisi, E., Hansu, O., Ipek, S. and Asaad, D.S. (2015), "Influence of waste rubber utilization on the fracture and steel-concrete bond strength properties of concrete", Constr. Build. Mater., 101, 1113-1121. https://doi.org/10.1016/j.conbuildmat.2015.10.030.
  20. Gesoglu, M., Guneyisi, E., O zturan, T. and O zbay, E. (2010), "Modeling the mechanical properties of rubberized concretes by neural network and genetic programming", Mater. Struct., 43(1), 31-45. https://doi.org/10.1617/s11527-009-9468-0.
  21. Golafshani, E.M. and Behnood, A. (2018), "Application of soft computing methods for predicting the elastic modulus of recycled aggregate concrete", J. Clean. Prod., 176, 1163-1176. https://doi.org/10.1016/j.jclepro.2017.11.186.
  22. Golafshani, E.M. and Behnood, A. (2018), "Application of soft computing methods for predicting the elastic modulus of recycled aggregate concrete", J. Clean. Prod., 176, 1163-1176. https://doi.org/10.1016/j.jclepro.2017.11.186.
  23. Golafshani, E.M. and Behnood, A. (2019), "Estimating the optimal mix design of silica fume concrete using biogeography-based programming", Cement Concrete Compos., 96, 95-105. https://doi.org/10.1016/j.cemconcomp.2018.11.005.
  24. Golafshani, E.M. and Pazouki, G. (2018), "Predicting the compressive strength of self-compacting concrete containing fly ash using a hybrid artificial intelligence method", Comput. Concrete, 22(4), 419-437. https://doi.org/10.12989/cac.2018.22.4.419.
  25. Golafshani, E.M., Behnood, A. and Arashpour, M. (2020), "Predicting the compressive strength of normal and high-performance concretes using ANN and ANFIS hybridized with grey wolf optimizer", Constr. Build. Mater., 232, 117266. https://doi.org/10.1016/j.conbuildmat.2019.117266.
  26. Grdic, Z., Toplicic-Curcic, G., Ristic, N., Grdic, D. and Mitkovic, P. (2014), "Hydro-abrasive resistance and mechanical properties of rubberized concrete", Gradevinar, 66(1), 11-20. https://doi.org/10.14256/jce.910.2013.
  27. Gregori, A., Castoro, C., Marano, G.C. and Greco, R. (2019), "Strength reduction factor of concrete with recycled rubber aggregates from tires", J. Mater. Civil Eng., 31(8), 04019146. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002783.
  28. Guneyisi, E., Gesoglu, M. and O zturan, T. (2004), "Properties of rubberized concretes containing silica fume", Cement Concrete Res., 34(12), 2309-2317. https://doi.org/10.1016/j.cemconres.2004.04.005.
  29. Guneyisi, E., Gesoglu, M. and O zturan, T. (2004), "Properties of rubberized concretes containing silica fume", Cement Concrete Res., 34(12), 2309-2317. https://doi.org/10.1016/j.cemconres.2004.04.005.
  30. Gupta, T., Patel, K.A., Siddique, S., Sharma, R.K. and Chaudhary, S. (2019), "Prediction of mechanical properties of rubberised concrete exposed to elevated temperature using ANN", Meas., 147, 106870. https://doi.org/10.1016/j.measurement.2019.106870.
  31. Hadzima-Nyarko, M., Nyarko, E.K., Ademovic, N., Milicevic, I. and Kalman Sipos, T. (2019), "Modelling the influence of waste rubber on compressive strength of concrete by artificial neural networks", Mater., 12(4), 561. https://doi.org/10.3390/ma12040561.
  32. Hagan, M.T. and Menhaj, M.B. (1994), "Training feedforward networks with the Marquardt algorithm", IEEE Trans. Neural Network., 5(6), 989-993. https://doi.org/10.1109/72.329697.
  33. Hiremath, P.N., Jayakesh, K., Rai, R., Raghavendra, N.S. and Yaragal, S.C. (2019), "Experimental investigation on utilization of waste shredded rubber tire as a replacement to fine aggregate in concrete", Sustain. Constr. Build. Mater., 561-569. https://doi.org/10.1007/978-981-13-3317-0_49.
  34. Holmes, N., Browne, A. and Montague, C. (2014), "Acoustic properties of concrete panels with crumb rubber as a fine aggregate replacement", Constr. Build. Mater., 73, 195-204. https://doi.org/10.1016/j.conbuildmat.2014.09.107.
  35. Jalal, M., Arabali, P., Grasley, Z., Bullard, J.W. and Jalal, H. (2020), "Behavior assessment, regression analysis and support vector machine (SVM) modeling of waste tire rubberized concrete", J. Clean. Prod., 273, 122960. https://doi.org/10.1016/j.jclepro.2020.122960.
  36. Jalal, M., Grasley, Z., Gurganus, C. and Bullard, J.W. (2020), "Experimental investigation and comparative machine-learning prediction of strength behavior of optimized recycled rubber concrete", Constr. Build. Mater., 256, 119478. https://doi.org/10.1016/j.conbuildmat.2020.119478.
  37. Jalal, M., Grasley, Z., Nassir, N. and Jalal, H. (2020), "Strength and dynamic elasticity modulus of rubberized concrete designed with ANFIS modeling and ultrasonic technique", Constr. Build. Mater., 240, 117920. https://doi.org/10.1016/j.conbuildmat.2019.117920.
  38. Jokar, F., Khorram, M., Karimi, G. and Hataf, N. (2019), "Experimental investigation of mechanical properties of crumbed rubber concrete containing natural zeolite", Constr. Build. Mater., 208, 651-658. https://doi.org/10.1016/j.conbuildmat.2019.03.063.
  39. Kandiri, A., Golafshani, E.M. and Behnood, A. (2020), "Estimation of the compressive strength of concretes containing ground granulated blast furnace slag using hybridized multi-objective ANN and salp swarm algorithm", Constr. Build. Mater., 248, 118676. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2020.118676.
  40. Khaloo, A.R., Dehestani, M. and Rahmatabadi, P. (2008), "Mechanical properties of concrete containing a high volume of tire-rubber particles", Waste Manag., 28(12), 2472-2482. https://doi.org/10.1016/j.wasman.2008.01.015.
  41. Khatib, Z.K. and Bayomy, F.M. (1999), "Rubberized Portland cement concrete", J. Mater. Civil Eng., 11(3), 206-213. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:3(206).
  42. Li, G., Garrick, G., Eggers, J., Abadie, C., Stubblefield, M.A. and Pang, S.S. (2004), "Waste tire fiber modified concrete", Compos. Part B Eng., 35(4), 305-312. https://doi.org/10.1016/j.compositesb.2004.01.002.
  43. Li, H.L., Xu, Y., Chen, P.Y., Ge, J.J. and Wu, F. (2019), "Impact energy consumption of high-volume rubber concrete with silica fume", Adv. Civil Eng., 2019, 1728762. https://doi.org/10.1155/2019/1728762.
  44. Li, Y., Zhang, X., Wang, R. and Lei, Y. (2019), "Performance enhancement of rubberised concrete via surface modification of rubber: A review", Constr. Build. Mater., 227, 116691. https://doi.org/10.1016/j.conbuildmat.2019.116691.
  45. Mazloom, M., Tajar, S.F. and Mahboubi, F. (2020), "Long-term quality control of self-compacting semi-lightweight concrete using short-term compressive strength and combinatorial artificial neural networks", Comput. Concrete, 25(5), 401-409. https://doi.org/10.12989/cac.2020.25.5.401.
  46. Mendis, A.S., Al-Deen, S. and Ashraf, M. (2017), "Behaviour of similar strength crumbed rubber concrete (CRC) mixes with different mix proportions", Constr. Build. Mater., 137, 354-366. https://doi.org/10.1016/j.conbuildmat.2017.01.125.
  47. Mohammadi, I., Khabbaz, H. and Vessalas, K. (2014), "In-depth assessment of Crumb Rubber Concrete (CRC) prepared by water-soaking treatment method for rigid pavements", Constr. Build. Mater., 71, 456-471. https://doi.org/10.1016/j.conbuildmat.2014.08.085.
  48. Mohammed, B.S. and Azmi, N.J. (2014), "Strength reduction factors for structural rubbercrete", Frontier. Struct. Civil Eng., 8(3), 270-281. https://doi.org/10.1007/s11709-014-0265-7.
  49. Nguyen, T.N., Yu, Y., Li, J., Gowripalan, N. and Sirivivatnanon, V. (2019), "Elastic modulus of ASR-affected concrete: An evaluation using artificial neural network", Comput. Concrete., 24(6), 541-553. https://doi.org/10.12989/cac.2019.24.6.541.
  50. Nielsen, M.P. and Hoang, L.C. (2016), Limit Analysis and Concrete Plasticity, Third Edition.
  51. Noaman, A.T., Bakar, B.A., Akil, H.M. and Alani, A.H. (2017), "Fracture characteristics of plain and steel fibre reinforced rubberized concrete", Constr. Build. Mater., 152, 414-423. https://doi.org/10.1016/j.conbuildmat.2017.06.127.
  52. Ozbay, E., Lachemi, M. and Sevim, U.K. (2011), "Compressive strength, abrasion resistance and energy absorption capacity of rubberized concretes with and without slag", Mater. Struct., 44(7), 1297-1307. https://doi.org/10.1617/s11527-010-9701-x.
  53. Pelisser, F., Zavarise, N., Longo, T.A. and Bernardin, A.M. (2011), "Concrete made with recycled tire rubber: effect of alkaline activation and silica fume addition", J. Clean. Prod., 19(6-7), 757-763. https://doi.org/10.1016/j.jclepro.2010.11.014.
  54. Pham, T.M., Elchalakani, M., Hao, H., Lai, J., Ameduri, S. and Tran, T.M. (2019), "Durability characteristics of lightweight rubberized concrete", Constr. Build. Mater., 224, 584-599. https://doi.org/10.1016/j.conbuildmat.2019.07.048.
  55. Reda Taha, M.M., El-Dieb, A.S., Abd El-Wahab, M.A. and Abdel-Hameed, M.E. (2008), "Mechanical, fracture, and microstructural investigations of rubber concrete", J. Mater. Civil Eng., 20(10), 640-649. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:10(640).
  56. Saha, P., Prasad, M.L.V. and RathishKumar, P. (2017), "Predicting strength of SCC using artificial neural network and multivariable regression analysis", Comput. Concrete, 20(1), 31-38. https://doi.org/10.12989/cac.2017.20.1.031.
  57. Samarakoon, S.S.M., Ruben, P., Pedersen, J.W. and Evangelista, L. (2019), "Mechanical performance of concrete made of steel fibers from tire waste", Case Stud. Constr. Mater., 11, e00259. https://doi.org/10.1016/j.cscm.2019.e00259.
  58. Sgobba, S., Borsa, M., Molfetta, M. and Marano, G.C. (2015), "Mechanical performance and medium-term degradation of rubberised concrete", Constr. Build. Mater., 98, 820-831. https://doi.org/10.1016/j.conbuildmat.2015.07.095.
  59. Siddika, A., Al Mamun, M.A., Alyousef, R., Amran, Y.M., Aslani, F. and Alabduljabbar, H. (2019), "Properties and utilizations of waste tire rubber in concrete: A review", Constr. Build. Mater., 224, 711-731. https://doi.org/10.1016/j.conbuildmat.2019.07.108.
  60. Siddique, R. and Naik, T.R. (2004), "Properties of concrete containing scrap-tire rubber-an overview", Waste Manag., 24(6), 563-569. https://doi.org/10.1016/j.wasman.2004.01.006.
  61. Stallings, K.A., Durham, S.A. and Chorzepa, M.G. (2019), "Effect of cement content and recycled rubber particle size on the performance of rubber-modified concrete", Int. J. Sustain. Eng., 12(3), 189-200. https://doi.org/10.1080/19397038.2018.1505971.
  62. Sukontasukkul, P. and Tiamlom, K. (2012), "Expansion under water and drying shrinkage of rubberized concrete mixed with crumb rubber with different size", Constr. Build. Mater., 29, 520-526. https://doi.org/10.1016/j.conbuildmat.2011.07.032.
  63. Takagi, T. and Sugeno, M. (1985), "Fuzzy identification of systems and its applications to modeling and control", IEEE Transac. Syst. Man Cybernetics, SMC-15(1), 116-132. https://doi.org/10.1109/TSMC.1985.6313399
  64. Thomas, B.S. and Gupta, R.C. (2015), "Long term behaviour of cement concrete containing discarded tire rubber", J. Clean. Prod., 102, 78-87. https://doi.org/10.1016/j.jclepro.2015.04.072.
  65. Thomas, B.S. and Gupta, R.C. (2016), "A comprehensive review on the applications of waste tire rubber in cement concrete", Renew. Sustain. Ener. Rev., 54, 1323-1333. https://doi.org/10.1016/j.rser.2015.10.092.
  66. Thomas, B.S. and Gupta, R.C. (2016), "Properties of high strength concrete containing scrap tire rubber", J. Clean. Prod., 113, 86-92. https://doi.org/10.1016/j.jclepro.2015.11.019.
  67. Thomas, B.S., Gupta, R.C., Kalla, P. and Cseteneyi, L. (2014), "Strength, abrasion and permeation characteristics of cement concrete containing discarded rubber fine aggregates", Constr. Build. Mater., 59, 204-212. https://doi.org/10.1016/j.conbuildmat.2014.01.074.
  68. Toma, I.O., Taranu, N., Banu, O.M., Budescu, M., Mihai, P. and Taran, R.G. (2015), "The effect of the aggregate replacement by waste tyre rubber crumbs on the mechanical properties of concrete", Revista Romana Mater. Roma. J. Mater., 45(4), 394-401.
  69. Topcu, I.B. and Saridemir, M. (2008), "Prediction of rubberized concrete properties using artificial neural network and fuzzy logic", Constr. Build. Mater., 22(4), 532-540. https://doi.org/10.1016/j.conbuildmat.2006.11.007.
  70. Vahidi, E.K., Malekabadi, M.M., Rezaei, A., Roshani, M.M. and Roshani, G.H. (2017), "Modelling of mechanical properties of roller compacted concrete containing RHA using ANFIS", Comput. Concrete, 19(4), 435-442. https://doi.org/10.12989/cac.2017.19.4.435.
  71. Wong, S.F. and Ting, S.K. (2009), "Use of recycled rubber tires in normal-and high-strength concretes", ACI Mater. J., 106(4), 325. https://doi.org/10.14359/56652.
  72. Xie, Y., Su, X.R., Wang, H.X., Luo, D.M. and Zhou, Y.L. (2019), "Experimental analysis of the toughness mechanism of rubber concrete", IOP Confer. Ser. Mater. Sci. Eng., 504(1), 012041. https://doi.org/10.1088/1757-899X/504/1/012041.
  73. Yaman, M.A., Abd Elaty, M. and Taman, M. (2017), "Predicting the ingredients of self compacting concrete using artificial neural network", Alexandria Eng. J., 56(4), 523-532. https://doi.org/10.1016/j.aej.2017.04.007.
  74. Youssf, O., ElGawady, M.A., Mills, J.E. and Ma, X. (2014), "An experimental investigation of crumb rubber concrete confined by fibre reinforced polymer tubes", Constr. Build. Mater., 53, 522-532. https://doi.org/10.1016/j.conbuildmat.2013.12.007.
  75. Youssf, O., ElGawady, M.A., Mills, J.E. and Ma, X. (2017), "Analytical modeling of the main characteristics of crumb rubber concrete", ACI Spec. Publ., 314, 1-18.
  76. Zaleska, M., Pavlik, Z., Citek, D., Jankovsky, O. and Pavlikova, M. (2019), "Eco-friendly concrete with scrap-tyre-rubber-based aggregate-Properties and thermal stability", Constr. Build. Mater., 225, 709-722. https://doi.org/10.1016/j.conbuildmat.2019.07.168.