Acknowledgement
This thesis was supported by the Dongduk Women's University Grant.
References
- H. Luo, M. Ren, K. M. Lim, Y. J. Koh, L. S. Wang, and J. S. Hur, Antioxidative activity of lichen Thamnolia vermicularis in vitro, Mycobiology, 34(3), 124 (2006). https://doi.org/10.4489/MYCO.2006.34.3.124
- J. M. Lord, A. Knight, J. M. Bannister, L. R. Ludwig, W. M. Malcolm, and D. A. Orlovich, Rediscovery of pycnidia in Thamnolia vermicularis: implications for chemotype occurrence and distribution, Lichenologist, 45(3), 397 (2013). https://doi.org/10.1017/s0024282913000017
- Y. Zhao, M. Wang, and B. Xu, A comprehensive review on secondary metabolites and health-promoting effects of edible lichen, J. Funct. Foods, 80, 104283 (2021). https://doi.org/10.1016/j.jff.2020.104283
- J. Guo, Z. Li, A. Wang, X. Liu, J. Wang, X. Guo, Y. Jing, and H. Hua, Three new phenolic compounds from the lichen Thamnolia vermicularis and their antiproliferative effects in prostate cancer cells, Planta Med, 77(18), 2042 (2011). https://doi.org/10.1055/s-0031-1280096
- R. Y. Choi, J. R. Ham, J. Yeo, J. S. Hur, S. K. Park, M. J. Kim, and M. K. Lee, Anti-obesity property of lichen Thamnolia vermicularis extract in 3T3-L1 cells and diet-induced obese mice, Prev. Nutr. Food Sci, 22(4), 285 (2017). https://doi.org/10.3746/pnf.2017.22.4.285
- V. Pant and P. B. Rao, Antioxidant and GC-MS analysis of Thamnolia subuliformis (Ehrh.) W.L. Culb. from western Himalaya, The Pharma Innovation Journal, 7(12), 82 (2018). https://doi.org/10.7897/2277-4572.07386
- Y. U. Haiyuan, X. Shen, D. Liu, M. Hong, and Y. Lu, The protective effects of β-sitosterol and vermicularin from Thamnolia vermicularis (Sw.) Ach. against skin aging in vitro, An. Acad. Bras. Cienc., 91(4), 11 (2019).
- S. P. J. Namal Senanayake, Green tea extract: chemistry, antioxidant properties and food applications - a review, J. Funct. Foods, 5(4), 1529 (2013). https://doi.org/10.1016/j.jff.2013.08.011
- M. D. Gianeti, D. G. Mercurio, and P. M. B. G. Maia Campos, The use of green tea extract in cosmetic formulations: not only an antioxidant active ingredient, Dermatol. Ther., 26(3), 267 (2013). https://doi.org/10.1111/j.1529-8019.2013.01552.x
- S. Verdier-Sevrain and F. Bonte, Skin hydration: a review on its molecular mechanisms, J. Cosmet. Dermatol., 6(2), 75 (2007). https://doi.org/10.1111/j.1473-2165.2007.00300.x
- H. J. Kim, S. Kim, and S. H. Lee, Non-invasive skin barrier lipid packing analysis using FT-IR and study of cosmetic formulation for damaged barrier, J. Soc. Cosmet. Sci. Korea, 46(3), 307 (2020). https://doi.org/10.15230/SCSK.2020.46.3.307
- O. V. Zillich, U. Schweiggert-Weisz, P. Eisner, and M. Kerscher, Polyphenols as active ingredients for cosmetic products, Int. J. Cosmet. Sci., 37(5), 455 (2015). https://doi.org/10.1111/ics.12218
- K. U. Schallreuter, S. Kothari, B. Chavan, and J. D. Spencer, Regulation of melanogenesis - controversies and new concepts, Exp. Dermatol., 17(5), 395 (2008). https://doi.org/10.1111/j.1600-0625.2007.00675.x
- S. H. Lee, S. H. Jun, J. Yeom, s. G. Park, C. K. Lee, and N. G. Kang, Optical clearing agent reduces scattering of light by the stratum corneum and modulates the physical properties of coenocytes via hydration, Ski. Res. Technol., 24(3), 371 (2018). https://doi.org/10.1111/srt.12439
- Y. Takema, M. Hattori, and K. Aizawa, The relationship between quantitative changes in collagen and formation of wrinkles on hairless mouse skin after chronic UV irradiation, J. Dermatol. Sci., 12(1), 56 (1996). https://doi.org/10.1016/0923-1811(95)00467-X
- R. Campana, C. Scesa, V. Patrone, E. Vittoria, and W. Baffone, Microbiological study of cosmetic products during their use by consumers: health risk and efficacy of preservative systems, Lett. Appl. Microbiol. 43(3), 301 (2006). https://doi.org/10.1111/j.1472-765X.2006.01952.x
- O. Folin and W. Denis, On phosphotungstic-phoshomolybdic compunds as color reagents, J. Biol. Chem., 12(2), 239 (1912). https://doi.org/10.1016/S0021-9258(18)88697-5
- S. I. Liochev, Reactive oxygen species and the free radical theory of aging, Free Radic. Biol. Med., 60, 1 (2013). https://doi.org/10.1016/j.freeradbiomed.2013.02.011
- T. Pillaiyar, M. Manickam, and V. Namasivayam, Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors, J. Enzyme Inhib. Med. Chem., 32(1), 403 (2017). https://doi.org/10.1080/14756366.2016.1256882
- U. Panich, V. Tangsupa-a-nan, T. Onkoksoong, K. Kongtaphan, K. Kasetsinsombat, P. Akarasereenont, and A. Wongkajornsilp, Inhibition of UVA-mediated melanogenesis by ascorbic acid through modulation of antioxidant defense and nitric oxide system, Arch. Pharm. Res., 34(5), 811 (2011). https://doi.org/10.1007/s12272-011-0515-3
- N. Taira, Y. Katsuyama, M. Yoshioka, O. Muraoka, and T. Morikawa, Structural requirements of alkylglyceryll-ascorbic acid derivatives for melanogenesis inhibitory activity, Int. J. Mol. Sci., 19(4), 1144 (2018). https://doi.org/10.3390/ijms19041144
- A. K. Langton, M. J. Sherratt, C. E. M. Griffiths, and R. E. B. Watson, A new wrinkle on old skin: the role of elastic fibres in skin ageing, Int. J. Cosmet. Sci., 32(5), 330 (2010). https://doi.org/10.1111/j.1468-2494.2010.00574.x
- K. S. Kang, I. D. Kim, R. H. Kwon, Y. Y. Heo, S. H. Oh, M. A. Kim, H. J. Jung, H. Y. Kang, and B. J. Ha, The evaluation of anti-wrinkle effects in oriental herb extract, J. Life Sci., 17(8), 1147 (2007). https://doi.org/10.5352/JLS.2007.17.8.1147
- M. Sazuka, H. Imazawa, Y. Shoji, T. Mita, Y. Hara, and M. Isemura, Inhibition of collagenases from mouse lung carcinoma cells by green tea catechins and black tea theaflavins, Biosci. Biotechnol. Biochem., 61(9), 1504 (1997). https://doi.org/10.1271/bbb.61.1504
- M. G. Soni, S. L. Taylor, N . A. Greenberg, and G. A. Burdock, Evaluation of the health aspects of methyl paraben: a review of the published literature, Food Chem. Toxicol., 40(10), 1335 (2002). https://doi.org/10.1016/S0278-6915(02)00107-2