References
- F. A. P. Fernandes, S. C. Heck, R. G. Pereira, C. A. Picon, P. A. P. Nascente, and L. C. Casteletti, Ion nitriding of a superaustenitic stainless steel: Wear and corrosion characterization, Surface and Coatings Technology, 204, 3087 (2020). Doi: https://doi.org/10.1016/j.surfcoat.2010.02.064
- C. O. A. Olsson and D. Landolt, Passive films on stainless steels-chemistry, structure and growth, Electrochimica Acta, 48, 1093 (2003). Doi: https://doi.org/10.1016/S0013-4686(02)00841-1
- A. Pardo, M. C. Merino, A. E. Coy, F. Viejo, R. Arrabal, and E. Matykina, Pitting corrosion behavior of austenitic stainless steels - combining effects of Mn and Mo additions, Corrosion Science, 50, 1796 (2008). Doi: http://doi.org/10.1016/j.corsci.2008.04.005
- D. H. Ko and Y. T. Shin, Evaluation of corrosion characteristics according to plastic strain on super austenitic stainless steel (Base Metal), Journal of Welding and Joining, 36, 8 (2018). Doi: http://doi.org/10.5781/JWJ.2018.36.6.2
- H. S. Heo and S. J. Kim, Electrochemical corrosion damage characteristics of austenite stainless steel and nickel alloy with various seawater concentrations, Corrosion Science and Technology, 20, 281 (2021). Doi: http://doi.org/10.14773/cst.2021.20.5.281
- S. T. Kim, K. H. Kong, I. S. Lee, Y. S. Park, and J. H. Lee, Investigation of the pitting corrosion behavior between the constituent phases in F53 super duplex stainless steel in acidified chloride environments, Corrosion Science and Technology, 3, 95 (2014). Doi: http://doi.org/10.14773/cst.2014.13.3.95
- T. Koutsoukis, A. Redjaimia, and G. Fourlaris, Phase transformations and mechanical properties in heat treated superaustenitic stainless steels, Materials Science and Engineering: A, 561, 477 (2013). Doi: http://doi.org/10.1016/j.msea.2012.10.066
- Z. Cheng, Z. Ye, J. Huang, J. Yang, S. Chen, and X. Zhao, Influence of heat input on the intermetallic compound characteristics and fracture mechanisms of titanium-stainless steel MIG-TIG double-sided arc welding joints, Intermetallics, 127, 106973 (2020). Doi: http://doi.org/10.1016/j.intermet.2020.106973
- J. Li, H. Li, Y. Liang, P. Liu, L. Yang, and Y. Wang, Effects of heat input and cooling rate during welding on intergranular corrosion behavior of high nitrogen austenitic stainless steel welded joints, Corrosion Science, 166, 108445 (2020). Doi: http://doi.org/10.1016/j.corsci.2020.108445
- K. Hao, C. Zhang, X. Zeng, and M. Gao, Effect of heat input on weld microstructure and toughness of laser-arc hybrid welding of martensitic stainless steel, Journal of Materials Processing Technology, 245, 7 (2017). Doi: http://doi.org/10.1016/j.jmatprotec.2017.02.007
- R. Unnikrishnan, K. S. N. Satish Idury, T. P. Ismail, A. Bhadauria, S. K. Shekhawat, R. K. Khatirkar, and S. G. Sapate, Effect of heat input on the microstructure, residual stresses and corrosion resistance of 304L austenitic stainless steel weldments, Materials Characterization, 93, 10 (2014). Doi: http://doi.org/10.1016/j.matchar.2014.03.013
- Z. Zhang, H. Jing, L. Xu, Y. Han, L. Zhao, X. Lv, and J. Zhang, Influence of heat input in electron beam process on microstructure and properties of duplex stainless steel welded interface, Applied Surface Science, 435, 352 (2018). Doi: http://doi.org/10.1016/j.apsusc.2017.11.125
- J. K. Shin, H. J. Jang, K. W. Cho, and C. J. Park, Effects of sigma and Chi phases on the localized corrosion resistance of SR50A super austenitic stainless steel, The Journal of Science and Engineering, 69, 364 (2013). Doi: http://doi.org/10.5006/0723
- R. T. Loto, C. A. Loto, and I. Ohijeagbon, Effect of heat treatment processes on the localized corrosion resistance of austenitic stainless steel type 301 in chloride/sulphate solution, Results in Physics, 11, 570 (2018). Doi: http://doi.org/10.1016/j.rinp.2018.09.056
- J. B. Lee, N. Kang, J. T. Park, S. T. Ahn, Y. D. Park, L. D. Choi, K. R. Kim, and K. M. Cho, Kinetics of carbide formation for quenching and tempering steels during high-frequency induction heat treatment, Material Chemistry and Physics, 129, 365 (2011). Doi: http://doi.org/10.1016/j.matchemphys.2011.04.026
- A. N. Isfahany, H. Saghafian, and G. Borhani, The effect of heat treatment on mechanical properties and corrosion behavior of AISI420 martensitic stainless steel, Journal of Alloys and Compounds, 509, 3931 (2011). Doi: http://doi.org/10.1016/j.jallcom.2010.12.174
- Q. Chao, V. Cruz, S. Thomas, N. Bibilis, P. Collins, A. Taylor, P. D. Hodgson, and D. Fabijanic, On the enhanced corrosion resistance of a selective laser melted austenitic stainless steel, Scripta Materialia, 141, 94 (2017). Doi: http://doi.org/10.1016/j.scriptamat.2017.07.037
- X. Chen, J. Li, X. Cheng, H. Wang, and Z. Huang, Effect of heat treatment on microstructure, mechanical and corrosion properties of austenitic stainless steel 316L using arc additive manufacturing, Materials Science and Engineering: A, 715, 307 (2018). Doi: http://doi.org/10.1016/j.msea.2017.10.002
- J. Bai, Y. Cui, J. Wang, N. Dong, M. S. Qurashi, H. Wei, Y. Yang, and P. Han, Effect of boron addition on the precipitation behavior of S31254, Metals, 8, 497 (2018). Doi: http://doi.org/10.3390/met8070497
- J. Wang, Y. Cui, J. Bai, and N. Dong, Effect of B addition on the microstructure and corrosion resistance of S31254 super austenitic stainless steel after solid solution treatment, Materials Letters, 252, 60 (2019). Doi: https://doi.org/10.1016/j.matlet.2019.05.107
- T. E. Abioye, J. Folkes, and A. T. Clare, A parametric study of Inconel 625 wire laser deposition, Journal of Materials Processing Technology, 213, 2145 (2013). Doi: https://doi.org/10.1016/j.jmatprotec.2013.06.007
- H. R. Z. Rajani, S. A. A. A. Mousavi, and F. M. Sani, Comparison of corrosion behavior between fusion cladded and explosive cladded Inconel 625/plain carbon steel bimetal plates, Materials and Design, 43, 467 (2013). Doi: https://doi.org/10.1016/j.matdes.2012.06.053
- X. Xing, X. Di, and B. Wang, The effect post-weld heat treatment temperature on the microstructure of Inconel 625 deposited metal, Journal of Alloys and Compounds, 593, 110 (2014). Doi: https://doi.org/10.1016/j.jallcom.2013.12.224
- ASTM G48-03, Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution, ASTM International (2003).
- D. M. Cho, J. S. Park, W. K. Jeong, S. G. Hong, and S. J. Kim, Corrosion behaviors of super austenitic stainless steel weld joints in the as-welded and post weld heat treated states, Korean Journal of Metals and Materials, 59, 374 (2021). Doi: https://doi.org/10.3365/KJMM.2021.59.6.374
- ASTM G150-99, Standard Test Method for Electrochemical Critical Pitting Temperature Testing of Stainless Steels, ASTM International (2004).
- Y. E. Kim, J. S. Park, D. M. Cho, S. G. Hong, and S. J. Kim, Analysis of the corrosion behavior according to the characteristics of sigma phase formed in super austenitic stainless steel, Corrosion Science and Technology, 19, 203 (2020). Doi: https://doi.org/10.14773/cst.2020.19.4.203
- Y. Zhou and D. L. Engelberg, Fast testing of ambient temperature pitting corrosion in type 2205 duplex stainless steel by bipolar electrochemistry experiments, Electrochemistry Communications, 117, 106779 (2020). Doi: https://doi.org/10.1016/j.elecom.2020.106779
- G. T. Sim, M. S. Thesis, pp. 5, Andong National University, Andong, (2010).
- S. J. Kim and S. G. Hong, A study on pitting initiation mechanism of super-austenitic stainless steel weld in chloride environment, Journal of Materials Research, 31, 3345 (2016). Doi: https://doi.org/10.1557/jmr.2016.347
- K. D. Ramkumar, A. Chandrasekhar, A. Srivastava, H. Preyas, S. Chandra S. Dev, and N. Arivazhagan, Development of pulsed current gas tungsten arc welding technique for dissimilar joints of marine grade alloys, Journal of Manufacturing Processes, 21, 201 (2016). Doi: https://doi.org/10.1016/j.jmapro.2015.10.004
- C. C. Hsieh and W. Wu, Overview of Intermetallic Sigma (σ) Phase Precipitation in Stainless Steels, ISRN Metallurgy, 2012, Article ID 732471 (2012). Doi: https://10.5402/2012/732471