DOI QR코드

DOI QR Code

Effects of Annealing and Post-weld Heat Treatments on Corrosion Behaviors of Super Austenitic Stainless Steel

소둔 및 용접후열처리가 슈퍼 오스테나이트계 스테인리스강의 부식거동에 미치는 영향

  • Yun, Duck Bin (Department of Advanced Materials Engineering, Sunchon National University) ;
  • Park, Jin Sung (Department of Advanced Materials Engineering, Sunchon National University) ;
  • Cho, Dong Min (Department of Advanced Materials Engineering, Sunchon National University) ;
  • Hong, Seung Gab (POSCO Technical Research Laboratories) ;
  • Kim, Sung Jin (Department of Advanced Materials Engineering, Sunchon National University)
  • 윤덕빈 (순천대학교 신소재공학과) ;
  • 박진성 (순천대학교 신소재공학과) ;
  • 조동민 (순천대학교 신소재공학과) ;
  • 홍승갑 (포스코 기술연구원) ;
  • 김성진 (순천대학교 신소재공학과)
  • Received : 2021.11.26
  • Accepted : 2021.12.10
  • Published : 2021.12.31

Abstract

The effect of two different annealing temperatures on the level of the second phase precipitated in the microstructure and the corrosion behaviors of super austenitic stainless steel were examined. The sample annealed at a higher temperature had a significantly lower fraction of the sigma phase enriched with Cr and Mo elements, showing more stable passivity behavior during the potentiodynamic polarization measurement. However, after the welding process with Inconel-type welding material, severe corrosion damage along the interface between the base metal and the weld metal was observed regardless of the annealing temperature. This was closely associated with the precipitation of the fine sigma phase with a high Mo concentration in the unmixed zone (UMZ) during the welding process, leading to the local depletion of Mo concentrations around the sigma phase. On the other hand, the fraction of the newly precipitated fine sigma phase in the UMZ was greatly reduced by post-weld heat treatment (PWHT), and the corrosion resistance was greatly improved. Based on the results, it is proposed that the alloy composition of welding materials and PWHT conditions should be further optimized to ensure the superior corrosion resistance of welded super austenitic stainless steel.

Keywords

References

  1. F. A. P. Fernandes, S. C. Heck, R. G. Pereira, C. A. Picon, P. A. P. Nascente, and L. C. Casteletti, Ion nitriding of a superaustenitic stainless steel: Wear and corrosion characterization, Surface and Coatings Technology, 204, 3087 (2020). Doi: https://doi.org/10.1016/j.surfcoat.2010.02.064
  2. C. O. A. Olsson and D. Landolt, Passive films on stainless steels-chemistry, structure and growth, Electrochimica Acta, 48, 1093 (2003). Doi: https://doi.org/10.1016/S0013-4686(02)00841-1
  3. A. Pardo, M. C. Merino, A. E. Coy, F. Viejo, R. Arrabal, and E. Matykina, Pitting corrosion behavior of austenitic stainless steels - combining effects of Mn and Mo additions, Corrosion Science, 50, 1796 (2008). Doi: http://doi.org/10.1016/j.corsci.2008.04.005
  4. D. H. Ko and Y. T. Shin, Evaluation of corrosion characteristics according to plastic strain on super austenitic stainless steel (Base Metal), Journal of Welding and Joining, 36, 8 (2018). Doi: http://doi.org/10.5781/JWJ.2018.36.6.2
  5. H. S. Heo and S. J. Kim, Electrochemical corrosion damage characteristics of austenite stainless steel and nickel alloy with various seawater concentrations, Corrosion Science and Technology, 20, 281 (2021). Doi: http://doi.org/10.14773/cst.2021.20.5.281
  6. S. T. Kim, K. H. Kong, I. S. Lee, Y. S. Park, and J. H. Lee, Investigation of the pitting corrosion behavior between the constituent phases in F53 super duplex stainless steel in acidified chloride environments, Corrosion Science and Technology, 3, 95 (2014). Doi: http://doi.org/10.14773/cst.2014.13.3.95
  7. T. Koutsoukis, A. Redjaimia, and G. Fourlaris, Phase transformations and mechanical properties in heat treated superaustenitic stainless steels, Materials Science and Engineering: A, 561, 477 (2013). Doi: http://doi.org/10.1016/j.msea.2012.10.066
  8. Z. Cheng, Z. Ye, J. Huang, J. Yang, S. Chen, and X. Zhao, Influence of heat input on the intermetallic compound characteristics and fracture mechanisms of titanium-stainless steel MIG-TIG double-sided arc welding joints, Intermetallics, 127, 106973 (2020). Doi: http://doi.org/10.1016/j.intermet.2020.106973
  9. J. Li, H. Li, Y. Liang, P. Liu, L. Yang, and Y. Wang, Effects of heat input and cooling rate during welding on intergranular corrosion behavior of high nitrogen austenitic stainless steel welded joints, Corrosion Science, 166, 108445 (2020). Doi: http://doi.org/10.1016/j.corsci.2020.108445
  10. K. Hao, C. Zhang, X. Zeng, and M. Gao, Effect of heat input on weld microstructure and toughness of laser-arc hybrid welding of martensitic stainless steel, Journal of Materials Processing Technology, 245, 7 (2017). Doi: http://doi.org/10.1016/j.jmatprotec.2017.02.007
  11. R. Unnikrishnan, K. S. N. Satish Idury, T. P. Ismail, A. Bhadauria, S. K. Shekhawat, R. K. Khatirkar, and S. G. Sapate, Effect of heat input on the microstructure, residual stresses and corrosion resistance of 304L austenitic stainless steel weldments, Materials Characterization, 93, 10 (2014). Doi: http://doi.org/10.1016/j.matchar.2014.03.013
  12. Z. Zhang, H. Jing, L. Xu, Y. Han, L. Zhao, X. Lv, and J. Zhang, Influence of heat input in electron beam process on microstructure and properties of duplex stainless steel welded interface, Applied Surface Science, 435, 352 (2018). Doi: http://doi.org/10.1016/j.apsusc.2017.11.125
  13. J. K. Shin, H. J. Jang, K. W. Cho, and C. J. Park, Effects of sigma and Chi phases on the localized corrosion resistance of SR50A super austenitic stainless steel, The Journal of Science and Engineering, 69, 364 (2013). Doi: http://doi.org/10.5006/0723
  14. R. T. Loto, C. A. Loto, and I. Ohijeagbon, Effect of heat treatment processes on the localized corrosion resistance of austenitic stainless steel type 301 in chloride/sulphate solution, Results in Physics, 11, 570 (2018). Doi: http://doi.org/10.1016/j.rinp.2018.09.056
  15. J. B. Lee, N. Kang, J. T. Park, S. T. Ahn, Y. D. Park, L. D. Choi, K. R. Kim, and K. M. Cho, Kinetics of carbide formation for quenching and tempering steels during high-frequency induction heat treatment, Material Chemistry and Physics, 129, 365 (2011). Doi: http://doi.org/10.1016/j.matchemphys.2011.04.026
  16. A. N. Isfahany, H. Saghafian, and G. Borhani, The effect of heat treatment on mechanical properties and corrosion behavior of AISI420 martensitic stainless steel, Journal of Alloys and Compounds, 509, 3931 (2011). Doi: http://doi.org/10.1016/j.jallcom.2010.12.174
  17. Q. Chao, V. Cruz, S. Thomas, N. Bibilis, P. Collins, A. Taylor, P. D. Hodgson, and D. Fabijanic, On the enhanced corrosion resistance of a selective laser melted austenitic stainless steel, Scripta Materialia, 141, 94 (2017). Doi: http://doi.org/10.1016/j.scriptamat.2017.07.037
  18. X. Chen, J. Li, X. Cheng, H. Wang, and Z. Huang, Effect of heat treatment on microstructure, mechanical and corrosion properties of austenitic stainless steel 316L using arc additive manufacturing, Materials Science and Engineering: A, 715, 307 (2018). Doi: http://doi.org/10.1016/j.msea.2017.10.002
  19. J. Bai, Y. Cui, J. Wang, N. Dong, M. S. Qurashi, H. Wei, Y. Yang, and P. Han, Effect of boron addition on the precipitation behavior of S31254, Metals, 8, 497 (2018). Doi: http://doi.org/10.3390/met8070497
  20. J. Wang, Y. Cui, J. Bai, and N. Dong, Effect of B addition on the microstructure and corrosion resistance of S31254 super austenitic stainless steel after solid solution treatment, Materials Letters, 252, 60 (2019). Doi: https://doi.org/10.1016/j.matlet.2019.05.107
  21. T. E. Abioye, J. Folkes, and A. T. Clare, A parametric study of Inconel 625 wire laser deposition, Journal of Materials Processing Technology, 213, 2145 (2013). Doi: https://doi.org/10.1016/j.jmatprotec.2013.06.007
  22. H. R. Z. Rajani, S. A. A. A. Mousavi, and F. M. Sani, Comparison of corrosion behavior between fusion cladded and explosive cladded Inconel 625/plain carbon steel bimetal plates, Materials and Design, 43, 467 (2013). Doi: https://doi.org/10.1016/j.matdes.2012.06.053
  23. X. Xing, X. Di, and B. Wang, The effect post-weld heat treatment temperature on the microstructure of Inconel 625 deposited metal, Journal of Alloys and Compounds, 593, 110 (2014). Doi: https://doi.org/10.1016/j.jallcom.2013.12.224
  24. ASTM G48-03, Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution, ASTM International (2003).
  25. D. M. Cho, J. S. Park, W. K. Jeong, S. G. Hong, and S. J. Kim, Corrosion behaviors of super austenitic stainless steel weld joints in the as-welded and post weld heat treated states, Korean Journal of Metals and Materials, 59, 374 (2021). Doi: https://doi.org/10.3365/KJMM.2021.59.6.374
  26. ASTM G150-99, Standard Test Method for Electrochemical Critical Pitting Temperature Testing of Stainless Steels, ASTM International (2004).
  27. Y. E. Kim, J. S. Park, D. M. Cho, S. G. Hong, and S. J. Kim, Analysis of the corrosion behavior according to the characteristics of sigma phase formed in super austenitic stainless steel, Corrosion Science and Technology, 19, 203 (2020). Doi: https://doi.org/10.14773/cst.2020.19.4.203
  28. Y. Zhou and D. L. Engelberg, Fast testing of ambient temperature pitting corrosion in type 2205 duplex stainless steel by bipolar electrochemistry experiments, Electrochemistry Communications, 117, 106779 (2020). Doi: https://doi.org/10.1016/j.elecom.2020.106779
  29. G. T. Sim, M. S. Thesis, pp. 5, Andong National University, Andong, (2010).
  30. S. J. Kim and S. G. Hong, A study on pitting initiation mechanism of super-austenitic stainless steel weld in chloride environment, Journal of Materials Research, 31, 3345 (2016). Doi: https://doi.org/10.1557/jmr.2016.347
  31. K. D. Ramkumar, A. Chandrasekhar, A. Srivastava, H. Preyas, S. Chandra S. Dev, and N. Arivazhagan, Development of pulsed current gas tungsten arc welding technique for dissimilar joints of marine grade alloys, Journal of Manufacturing Processes, 21, 201 (2016). Doi: https://doi.org/10.1016/j.jmapro.2015.10.004
  32. C. C. Hsieh and W. Wu, Overview of Intermetallic Sigma (σ) Phase Precipitation in Stainless Steels, ISRN Metallurgy, 2012, Article ID 732471 (2012). Doi: https://10.5402/2012/732471