참고문헌
- Arora, J. (2011), Introduction to Optimum Design, Third edition, Academic Press, MI, USA.
- Atmaca, B., Dede, T. and Grzywinski, M. (2020), "Optimization of cables size and prestressing force for a single pylon cable-stayed bridge with Jaya algorithm", Steel Comp. Struct., 34(6), 853-862. https://doi.org/10.12989/scs.2020.34.6.853.
- Belegundu, A.D. and Chandrupatla T.R. (2011), Optimization Concepts and Applications in Engineering, Second Edition, Cambridge University Press, United Kingdom.
- Chiandussi, G., Codegone, M., Ferrero, S. and Varesio, F.E., (2012), "Comparison of multi-objective optimization methodologies for engineering applications", Comp. Math. App., 63(5), 912-942. https://doi.org/10.1016/j.camwa.2011.11.057.
- Coello, C.A.C (2001), "A short tutorial on evolutionary multiobjective optimization", Proceedings, First International Conference on Evolutionary Multi-Criterion Optimization, Zurich, March.
- Coello, C.A.C. and Pulido, G. (2005), "Multiobjective Structural Optimization Using a Microgenetic Algorithm", Struct. Mult. Optim., 30, 388-403. https://doi.org/10.1007/s00158-005-0527-z.
- Coello, C.A.C., Lamont, G.B. and Van Veldhuisen D.A. (2007), Evolutionary Algorithms for Solving Multi-Objective Problems, Springer, London, United Kingdom.
- Deb, K., Thiele, L., Laumanns, M. and Zitzler, E. (2001), "Scalable Test Problems for Evolutionary Multi-Objective Optimization", Evolutionary Multiobjective Optimization, 105-145. Zurich, Switzerland
- Deb, K., Pratap, A., Agarwal, S. and Meyarivan T. (2002), "A fast and elitist multi-objective genetic algorithm: NSGA-II", IEEE Trans. Evol. Comp., 6(2), 182-197. https://doi.org/10.1109/4235.996017.
- Dede, T., Grzywinski, M. and Selejdak, J. (2020), "Continuous size optimization of large-scale dome structures with dynamic constraints", Struct. Eng. Mech., 73(4), 397-405. https://doi.org/10.12989/sem.2020.73.4.397.
- Durillo, J.J. and Nebro A.J. (2011), "jMetal: A java framework for multi-objective optimization", Adv. Eng. Software, 42(10), 760-771. https://doi.org/10.1016/j.advengsoft.2011.05.014.
- Durillo, J.J., Nebro, A.J. and Alba, E. (2010), "The jMetal framework for multi-objective optimization: Design and architecture", CEC 2010, 4138-4325. https://doi.org/10.1109/CEC.2010.5586354.
- Farhang-Mehr, A. and Azarm, S. (2002) "Entropy-based multi-objective genetic algorithm for design optimization", Struct. Mult. Optim., 24(5), 351-361. https://doi.org/10.1007/s00158-002-0247-6.
- Gholizadeh, S., Danesh, M. and Gheyratmand, C. (2020), "A new Newton metaheuristic algorithm for discrete performance-based design optimization of steel moment frames", Comp. Struct., 234, https://doi.org/10.1016/j.compstruc.2020.106250.
- Got, A., Moussaoui A. and Zouache, D. (2020), "A guided population archive whale optimization algorithm for solving multiobjective optimization problems", Expert Syst. App., 141. https://doi.org/10.1016/j.eswa.2019.112972.
- Hernandez, S., Brebbia, C.A. and Wilde, W.P. (2012), Computer Aided Optimum Design in Engineering XII, WIT press, United Kingdom.
- Ho-Huu, V., Hartjes, S., Visser, H.G. and Curran, R. (2018), "An improved MOEA/D algorithm for bi-objective optimization problems with complex Pareto fronts and its application to structural optimization", Exp. Sys. with App., 92, 430-446. https://doi.org/10.1016/j.eswa.2017.09.051.
- Jahangiri, M., Hadianfard, M.A., Najafgholipour, M.A., Jahangiri, M. and Gerami, M.R. (2020), "Interactive autodidactic school: A new metaheuristic optimization algorithm for solving mathematical and structural design optimization problems", Comp. Struct., 235. https://doi.org/10.1016/j.compstruc.2020.106268.
- Kaveh, A. and Laknejadi, K. (2011a), "A novel hybrid charge system search and particle swarm optimization method for multi-objective optimization", Expert Syst. Appl., 12(38), 15475-15488. https://doi.org/10.1016/j.eswa.2011.06.012.
- Kaveh, A. and Laknejadi, K. (2011b), "A hybrid multi-objective particle swarm optimization and decision making procedure for optimal design of truss structures", Iranian J. Sci. Technol., 35(C2), 137-154.
- Kaveh, A. and Laknejadi, K. and Alinejad B. (2012), "Performance based multi-objective optimization of large steel structures", Acta Mechanica, 2(223), 355-369. https://doi.org/10.1007/s00707-011-0564-1.
- Kaveh, A. and Laknejadi, K. (2013a), "A hybrid evolutionary graph based multi-objective algorithm for layout optimization of truss structures", Acta Mechanica, 224, 343-364. https://doi.org/10.1007/s00707-012-0754-5.
- Kaveh, A. and Laknejadi, K. (2013b), "A new multi-swarm multiobjective optimization method for structural design", Adv. Eng. Software, 58, 54-69. https://doi.org/10.1016/j.advengsoft.2013.01.004.
- Kaveh, A., Kalateh-Ahani, M. and Fahimi-Farzam, M. (2013), "Constructability optimal design of reinforced concrete retaining walls using a multi-objective genetic algorithm", Struct. Eng. Mech., 2(47), 227-245. https://doi.org/10.12989/sem.2013.47.2.227.
- Kaveh, A. and Massoudi, M.S. (2014), "Multi-objective optimization using Charged System Search", Scientia Iranica, 6(21), 1845-1860. http://scientiairanica.sharif.edu/issue_153_159.html.
- Kaveh, A., Fahimi-Farzam, M. and Kalateh-Ahani, M. (2015), "Performance-based multi-objective optimal design of steel frame structures: nonlinear dynamic procedure", Scientia Iranica, 2(22), 373-387. http://scientiairanica.sharif.edu/issue_160_162.html.
- Kaveh, A. and Bakhshpoori, T. (2016), "An efficient and simplified multi-objective cuckoo search algorithm for design optimization", Adv. Comput. Design, 1(1), 87-103. https://doi.org/10.12989/acd.2016.1.1.087.
- Kaveh, A., Mahdipour Moghanni, R. and Javadi, S.M. (2019), "Ground motion record selection using multi-objective optimization algorithms: a comparative study", Periodica Polytechnica Civil Eng., 63(3), 812-822. https://doi.org/10.3311/PPci.14354.
- Kaveh, A. and Mahdavi, V.R., (2019), "Multi-objective colliding bodies optimization algorithm for design of trusses", J. Comp. Des. Eng., 6(1), 49-59. https://doi.org/10.1016/j.jcde.2018.04.001.
- Kaveh, A., and Ilchi Ghazaan M. (2020), "A new VPS-based algorithm for multi-objective optimization problems", Eng. Comput., 36 ,1029-1040. https://doi.org/10.1007/s00366-019-00747-8.
- Khot, N.S. and Berke, L. (1984), "Structural optimization using optimality criteria methods", Proceeding of New directions in optimum structural design, John Wiley and Sons Inc., NJ, USA.
- Kooshkbaghi, M. and Kaveh, A. (2020), "Sizing optimization of truss structures with continuous variables by artificial coronary circulation system algorithm", Iran J. Sci. Tech. Trans. Civ. Eng., 44, 1-20. https://doi.org/10.1007/s40996-019-00254-2.
- Kooshkbaghi, M., Kaveh, A. and Zarfam, P. (2020), "Different discrete ACCS algorithms for optimal design of truss structures: A comparative study", Iran J. Sci. Tech. Trans. Civ. Eng., 44,49-68. https://doi.org/10.1007/s40996-019-00291-x.
- Lee, K.S. and Geem, Z.W., (2004), "A new structural optimization method based on harmony search algorithm", Comp. Struc., 82,781-798. https://doi.org/10.1016/j.compstruc.2004.01.002.
- Li, L.J., Huang, Z.B., Liu, F. and Wu, Q.H. (2007), "A heuristic Particle Swarm Optimizer for Optimization of Pin Connected Structures", Comp. Struct., 85, 340-349. https://doi.org/10.1016/j.compstruc.2006.11.020.
- Makoto, O. (2011), Optimization of Finite Dimensional Structures, CRC Press, Florida, USA. https://doi.org/10.1201/EBK1439820032.
- Mortazavi, A. (2020), "Large-scale structural optimization using a fuzzy reinforced swarm intelligence algorithm", Adv. Eng. Soft., 142. https://doi.org/10.1016/j.advengsoft.2020.102790.
- Omidinasab, F. and Goodarzimehr, V. (2020). "A hybrid particle swarm optimization and genetic algorithm for truss structures with discrete variables", J. Appl. Comp. Mech., 6(3), 593-604. https://doi.org/10.22055/jacm.2019.28992.1531.
- Parejo, J.A., Ruiz-Cortes, A., Lozano, S. and Fernandez, P. (2012), "Metaheuristic optimization frameworks: A survey and benchmarking", Soft Comp., 16, 527-561. https://doi.org/10.1007/s00500-011-0754-8.
- Peter, W.C. and Klarbring A. (2009), An Introduction to Structural Optimization, 2009, Springer, London, United Kingdom. https://doi.org/10.1007/978-1-4020-8666-3.
- Rao, S.S. (1987), "Game theory approach for multiobjective structural optimization", Comp. Struct., 25, 119-127. https://doi.org/10.1016/0045-7949(87)90223-9.
- Reddy, M.J. and Kumar, D.N. (2007) "An efficient Multi-objective Optimization Algorithm Based on Swarm Intelligence for Engineering Design", Eng. Optimization, 39, 49-68. https://doi.org/10.1080/03052150600930493.
- Shahrouzi, M., Aghabaglou, M. and Rafiee, F. (2017), "ObserverTeacher-Learner-Based Optimization: An enhanced metaheuristic for structural sizing design", Struct. Eng. Mech., 62(5). https://doi.org/10.12989/sem.2017.62.5.537.
- Singiresu, S.R. (2009), Engineering Optimization: Theory and Practice, John Wiley, NJ, USA.
- Srinivas, N. and Deb, K. (1995), "Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation", 2(3), 221-248. https://doi.org/10.1162/evco.1994.2.3.221.
- Talaslioglu, T. (2011), "Multiobjective design optimization of grillage systems according to LRFD-AISC", Adv. Civil Eng., https://doi.org/10.1155/2011/932871.
- Talaslioglu, T. (2015), "Optimization of geometrically nonlinear lattice girders part i: considering member strengths", J. Civil Eng. Man., 21(4), 423-443. https://doi.org/10.3846/13923730.2014.890648.
- Talaslioglu, T. (2019a), "Optimal dome design considering member-related design constraints", Front. Struct. Civ. Eng., 13, 1150-1170. https://doi.org/10.1007/s11709-019-0543-5.
- Talaslioglu, T. (2019b), "Design Optimization of Tubular Lattice Girders", Adv. Steel Constr, 15(3), 274-287. https://doi.org/10.18057/IJASC.2019.15.3.8.
- Talaslioglu, T. (2019c) "Optimal design of steel skeletal structures using the enhanced genetic algorithm methodology", Front. Struct. Civ. Eng., 13, 863-889. https://doi.org/10.1007/s11709-019-0523-9.
- Talaslioglu, T. (2019d). "A Unified Optimal Design Approach for Geometrically Nonlinear Skeletal Dome Structures" Periodica Poly. Civil Eng., 63(2), 518-540. https://doi.org/10.3311/PPci.13329.
- Tejani, G.G., Savsani, V.J., Patel, V.K. and Bureerat S. (2017) "Topology, shape, and size optimization of truss structures using modified teaching-learning based optimization", Adv. Comput. Design, 2(4), 313-331. https://doi.org/10.12989/acd.2017.2.4.313.
- Tejani, G.G., Pholdee, N., Bureerat, S. and Prayogo, D. (2018), "Multiobjective adaptive symbiotic organisms search for truss optimization problems", Know.-Based Syst., 161, 398-414. https://doi.org/10.1016/j.knosys.2018.08.005.
- Veldhuizen, D.A. and Lamont G.B. (1998), "Multi-objective evolutionary algorithm research: a history and analysis", Technical Report TR-98-03, Department of Electrical and Computer Engineering Graduate School of Engineering Air Force Institute of Technology, Wright-Patterson, Air Force Base, OH, USA.
- Zawidzki, M., Jankowski, L. (2019), "Multiobjective optimization of modular structures: Weight versus geometric versatility in a Truss‐Z system", Comput Aided Civ Inf. Struc., 34, 1026-1040. https://doi.org/10.1111/mice.12478.
- Zitzler, E. and Thiele L. (1999) "Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach", IEEE Trans. Evol. Comp., 3(4), 257-271. https://doi.org/10.1109/4235.797969.
- Zitzler, E., Deb, K. and Thieler, L. (2000) "Comparison of multiobjective evolutionary algorithms: Empirical results", IEEE Trans. Evol. Comp., 8, 173-195. https://doi.org/10.1162/106365600568202.
- JMetal v5.10 (2020), jMetal; jMetal, http://jmetal.sourceforge.net
- JMetal (2020), jMetal; Github, CA, USA. https://github.com/jMetal/.
- CRAN Package (2020), The R Project for Statistical Computing; The R Foundation. http://www.r-project.org.
- Basic MiKTeX 2.9.4521 package (2020), MikTeX; Christian Schenk. http://miktex.org.
- Java (2020), Java; Oracle, CA, USA. http://www.java.com.
피인용 문헌
- A cellular-based evolutionary approach for the extraction of emerging patterns in massive data streams vol.183, 2021, https://doi.org/10.1016/j.eswa.2021.115419
- Research on the Multi-Objective Optimization Design of Connecting Claw Jig vol.21, pp.6, 2021, https://doi.org/10.1007/s13296-021-00542-6