References
- Abbas I. A. (2006), "Natural frequencies of a poroelastic hollow cylinder", Acta Mechanica, 186(1-4), 229-237. http://doi.org/10.1007/s00707-006-0314-y.
- Abbas, I. A. and Youssef H. M. (2009), "Finite element analysis of two-temperature generalized magneto-thermoelasticity", Arch. Appl. Mech., 79(10), 917-925. http://doi.org/10.1007/s00419-008-0259-9.
- Abbas I. A. and Youssef H. M. (2012), "A nonlinear generalized thermoelasticity model of temperature-dependent materials using finite element method", J. Thermophys., 33(7), 1302-1313. https://doi.org/10.1007/s10765-012-1272-3
- Abbas, I.A. (2018a), "A study on fractional order theory in thermoelastic half-space under thermal loading", Physical Mesomechanics., 21(2), 150-156. https://doi.org/10.1134/S102995991802008X
- Abbas, I.A. (2018b), "Free vibrations of nanoscale beam under two-temperature Green Naghdi model", J. Acoustics Vib., 23(3), 289-293.http://doi.org/10.20855/ijav.2018.23.31051.
- Abd-Alla A. M., Mahmoud S. R. and Al-Shehri N.A. (2011) "Effect of the rotation on a non-homogeneous infinite cylinder of orthotropic material", Appl. Math. Comput., 217(22), 8914-8922.http://doi.org/10.1016/j.amc.2011.03.077
- Abd-Alla A. M., Yahya G. A. and Mahmoud S. R. (2013a), "Effect of magnetic field and non-homogeneity on the radial vibrations in hollow rotating elastic cylinder", Meccanica, 48(3), 555-566.http://doi.org/10.1007/s11012-012-9615-5
- Abd-Alla A. M., Yahya G.A. and Mahmoud S. R. (2013b), "Radial vibrations in a non-homogeneous orthotropic elastic hollow sphere subjected to rotation", J. Comput. Theoretical Nanosci., 10(2), 455-463.http://doi.org/10.1166/jctn.2013.2718
- Abouelregal A. E. (2019a), "Rotating magneto-thermoelastic rod with finite length due to moving heat sources via Eringen's nonlocal model", J. Comput. Appl. Mech., 50(1), 118-126.http://doi.org/10.22059/JCAMECH.2019.275893.360
- Abouelregal A. E. (2019b), "A novel generalized thermoelasticity with higher-order time-derivatives and three-phase lags", Multidiscipline Model Mater. Struct., 16(4), 689-711. https://doi.org/10.1108/MMMS-07-2019-0138
- Abouelregal A. E. (2020), "A novel model of nonlocal thermoelasticity with time derivatives of higher order", Math. Methods Appl. Sci., http://doi.org/10.1002/mma.6416.
- Abouelregal E. (2019c), "Modified fractional thermoelasticity model with multi-relaxation times of higher order: application to spherical cavity exposed to a harmonic varying heat", Waves Random Complex Media, http://doi.org/10.1080/17455030.2019.1628320, 2019.
- Abouelregal E. (2019d), "Two-temperature thermoelastic model without energy dissipation including higher order time-derivatives and two phase-lags, Materials Research Express, 6(11), 116535. https://doi.org/10.1088/2053-1591/ab447f.
- Abouelregal, E. (2019e), "On Green and Naghdi thermoelasticity model without energy dissipation with higher order time differential and phase-lags", J. Appl. Comput. Mech., 6(3), 445-456.http://doi.org/10.22055/JACM.2019.29960.1649.
- Al-Basyouni, K.S., Mahmoud, S.R. and Alzahrani, E. (2014), "Effect of rotation, magnetic field and a periodic loading on radial vibrations thermo viscoelastic non-homogeneous media", Boundary Value Problems, 1(166), http://doi.org/10.1186/s1366-014-0166-7.
- Alzahrani, F.S. and Abbas, I.A. (2020), "Photo-thermal interactions in a semiconducting media with a spherical cavity under hyperbolic two-temperature model", Mathematics, 8(585), 1-11. http://doi.org/10.3390/math8040585.
- Biot, M.A. (1965), "Theory of stress-strain relations in an isotropic viscoelasticity, and relaxation phenomena", J. Appl. Phys., 18, 27-34. https://doi.org/10.1063/1.1697551
- Biswas, S., Mukhopadhyay, B. and Shaw, S. (2017), "Rayleigh surface wave propagation in orthotropic thermoelastic solid under three phase lag model", J. Thermal. Stress., 40(4), 403-419.http://doi.org/10.1080/01495739.2017.1283971.
- Biswas, S. and Abo-Dahab, S.M. (2018), "Effect of phase lags on Rayleigh wave propagation in initially stressed magneto-thermoelastic orthotropic medium", Appl. Math. Modelling, 59, 713-727.https://doi.org/10.1016/j.apm.2018.02.025.
- Biswas, S. (2018), "Modelling of memory-dependent derivatives in orthotropic medium with three-phase-lag model under the effect of magnetic field", Mech. Based Design Struct. Machines, 47(3), 302-318.http://doi.org/10.1080/15397734.2018.1548968.
- Bousahla, A.A., Bourada, F., Mahmoud, S.R., Tounsi, A., Algarni, A., Adda Bedia, E.A. and Tounsi, A. (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comput. Concrete, 25(2), 155-166.https://doi.org/10.12989/cac.2020.25.2.155.
- Bourada, F., Bousahla, A.A., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation", Comput. Concrete, 25(6), 485-495.https://doi.org/10.12989/cac.2020.25.6.485.
- Chikr, S.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R., Benrahou, S.R. and Tounsi, A. (2020), "A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach", Geomech. Eng., 21(5), 471-487.https://doi.org/10.12989/gae.2020.21.5.471.
- Das, B. and Lahiri, A. (2015), "Generalized Magneto-thermoelasticity for isotropic media", J. Thermal. Stress., 38, 210-228. https://doi.org/10.1080/01495739.2014.985564
- Tzou, D.Y. (1995), "A unified field approach for heat conduction from macro to micro scales", J. Heat Transfer, 117(1), 8-16. http://doi.org/10.1115/1.2822329.
- EL-Naggar, A.M., Kishka, Z., Abd-Alla, A. and Abbas, I.A. (2013), "On the initial stress, magnetic field, voids and rotation effects on plane waves in generalized thermoelasticity", J. Comput. Theoretical Nanosci., 10(6), 1408-1417.http://doi.org/10.1166/jctn.2013.2862
- Ezzat, M.A. (2020), "Fractional thermo-viscoelastic response of biological tissue with variable thermal material properties", J. Thermal Stress., 43(9), 1120-1137.http://doi.org/10.1080/01495739.2020.1770643
- Ezzat, M.A., EL- Karamany, A.S. and EL-Bary, A.A. (2014), "Magneto-thermoelasticity with two fractional order heat transfer", J. Association Arab U Basic Appl. Sci., http://dx.doi.org/10.1016/j.jau.bas.2014.06.009
- Green, A.E. and Naghdi, P.M. (1993), "Thermoelasticity without energy dissipation", J. Elasticity, 31, 189-208. https://doi.org/10.1007/BF00044969
- Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Adda Bedia, E.A. and Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and Free vibration analysis", Comput. Concrete, 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037.
- Kumar, R. and Chawla, V. (2014), "General solution and fundamental solution for two-dimensional problem in orthotropic thermoelastic media with voids", Theoretical Appl. Mech., 41(4), 247-265. http://doi.org/ 10.2298/TAM1404247.
- Kumar, R., Sharma, N. and Lata, P. (2015), "Disturbance due to inclined load in transversely isotropic thermoelastic medium with two temperature and without energy dissipation", Mater. Phys. Mech., 22(2), 107-117.
- Kumar, R., Sharma, N. and Lata, P. (2016), "Thermomechanical interactions in transversely isotropic magneto-thermoelastic medium with vacuum and with and without energy dissipation with combined effects of rotation, vacuum and two temperatures", Appl. Math. Modelling, 40(13-14), 6560-6575.http://doi.org/10.1016/j.apm.2016.01.061.
- Kumar, R., Sharma, N. and Lata, P. (2017)," Effects of hall current and two temperature transversely isotropic magneto-thermoelastic with and without energy dissipation due to ramp type heat", Mech. Adv. Mater. Struct., 24(8), 625-635.http://doi.org/10.1080/15376494.2016.1196769.
- Lata, P. (2019), "Time harmonic interactions in fractional thermoelastic diffusive thick circular plate", Coupled Syst. Mech., 8(1) 39-53. http://doi.org/10.12989/csm.2019.8.1.039.
- Lata, P. and Kaur, I. (2019), "Effect of rotation and inclined load on transversely isotropic magneto thermoelastic solid", Structural Engineering and Mechanics, 70(2), 245-255.http://doi.org/10.12289/sem.2019.70.2.245.
- Lata, P. and Zakhmi, H. (2019), "Fractional order generalized thermoelastic study in orthotropic medium of type GN-III, Geomech. Eng., 19(4), 295-305, http://doi.org/10.12989/gae.2019.19.4.295.
- Lata, P. and Zakhmi, H. (2020), "Time harmonic interactions in an orthotropic media in the context of fractional order theory of thermoelasticity", Structural Engineering and Mechanics, 73(6), 725-735.http://doi.org/10.12989/sem.2020.73.6.725.
- Lord, H.W., Shulman, Y. (1967), "A generalized dynamical theory of thermo-elasticity", J. Mech. Phys. Solids, 15, 299-309. https://doi.org/10.1016/0022-5096(67)90024-5
- Marin, M. (1994), "The Lagrange identity method in thermoelasticity of bodies with microstructure", International Journal of Engineering Science, 32(8), 1229-1240. https://doi.org/10.1016/0020-7225(94)90034-5
- Marin, M. (1995), "On existence and uniqueness in thermoelasticity of micropolar bodies", Comptes Rendus De Lacademie Des Sciences Serie II Fascicule B-Mecanique Physique Astronomie, 321(12), 375-480.
- Marin, M. (2010), "Some estimates on vibrations in thermoelasticity of dipolar bodies", J. Vib. Control, 16(1), 33-47. https://doi.org/10.1177/1077546309103419
- Mashat, D.S., Zenkour, A.M. and Abouelregal, A.E. (2017), "Thermoelastic interactions in a rotating infinite orthotropic elastic body with a cylindrical hole and variable thermal conductivity", Arch. Mech. Eng., 64(4), 481-498.http://doi.org/10.1515/meceng-2017-0028.
- Matouk, H., Bousahla, A.A., Heireche, H., Bourada, F., Adda Bedia, E.A., Tounsi, A., Mahmoud, S.R., Tounsi, A. and Benrahou, K.H. (2020), "Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory", Adv. Nano Res., 8(4), 293-305.https://doi.org/10.12989/anr.2020.8.4.293.
- Menasria, A., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2020), "A four-unknown refined plate theory for dynamicanalysis of FG-sandwich plates under various boundary conditions", Steel Compos. Struct., 36(3), 355-367.http://dx.doi.org/10.12989/scs.2020.36.3.355
- Othman, M. I. A. and Song, Y. (2011), "Reflection of Magneto-thermoelastic waves from a rotating elastic half space in generalized thermoelasticity under three theories", Mech. Mech. Eng., 15(1), 5-24. https://doi.org/10.1016/j.ijengsci.2007.12.004.
- Othman, M. I. A. and Mansoure, N. (2015), "The effect of magnetic field on generalized thermoelastic medium with two temperature under three phase lag model", Multidiscipline Model Mater. Struct., 11(4), 544-557.http://doi.org/10.1108/MMMS-03-2015-0011
- Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1986), Fortran Numerical Recipes, Cambridge University Press, Cambridge, United Kingdom.
- Rabhi, M., Benrahou, K.H., Kaci, A., Houari, M.S.A., Bourada, F., Bousahla, A.A., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R. and Tounsi, A. (2020), "A new innovative 3-unknowns HSDT for buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Geomech. Eng., 22(2). 119-132.https://doi.org/10.12989/gae.2020.22.2.119
- Rahmani, M.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory", Comput. Concrete, 25(3), 225-244.https://doi.org/10.12989/cac.2020.25.3.225
- Refrafi, S., Bousahla, A.A., Bouhadra, A., Menasria, A., Bourada, F., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A. (2020), "Effects of hygro-thermomechanical conditions on the buckling of FG sandwich plates resting on elastic foundations", Comput. Concrete, 25(4), 311-325.https://doi.org/10.12989/cac.2020.25.4.311
- Roychoudhuri, S. K. and Bandyopadhyay, N. (2005), "Magneto-thermoelastic waves in a perfectly conducting elastic half space in thermoelasticity III", J. Math. Math. Sci., 20, 3303-3318. http://doi.org/10.1155/IJMMS.2005.3303.
- Saeed T. and Abbas, I. A. (2019), "Thermomechanical response in a two dimension porous medium subjected to thermal loading", J. Numerical Methods Heat Fluid Flow, 22(8), http://doi.org/10.1108/HFF-11-2019-0803.
- Saeed T., Abbas, I. A. and Marin M. (2019), "GL model on thermo-elastic interaction in a poroelastic material using finite element method", Symmetry, 12(3), 488. http://doi.org/10.3390/sym12030488.
- Schoenberg M. and Censor D. (1973), "Elastic waves in rotating media", Quarterly Appl. Math., 31, 115-125. https://doi.org/10.1090/qam/99708
- Sharma K. and Marin M. (2014), "Reflection and transmission of waves from imperfect boundary between two heat conducting micropolar thermoelastic solids", Analele Universitatii Ovidius Constanta-Seria Mathematica, 22(2), 151-176. http://doi.org/10.2478/auom-2014-0040.
- Shekhar S. and Parvez I. A. (2014), "Finite element analysis of the generalized magneto-thermoelastic in homogeneous orthotropic solid cylinder", Conference Math. Sci., 257-260. http://doi.org/10.13140/2.1.4949.4403.
- Sharma, N., Kumar, R. and Ram, P. (2008), "Dynamical behavior of generalized thermoelastic diffusion with two relaxation times in frequency domain", Struct. Eng. Mech., 28(1), 19-38. https://doi.org/10.12989/sem.2008.28.1.019
- Zenkour, A.M. (2020), "Magneto-thermal shock for a fiber-reinforced anisotropic half-space studied with a refined multi-dual-phase-lag model", J. Phys. Chem. Solids, 137, https://doi.org/10.1016/j.jpcs.2019.109213
- Zine, A., Bousahla, A.A., Bourada, F., Benrahou, K.H., Tounsi, A., Adda Bedia, E.A., Mahmoud, S.R. and Tounsi, A. (2020), "Bending analysis of functionally graded porous plates via a refined shear deformation theory", Comput. Concrete, 26(1), 63-74. http://dx.doi.org/10.12989/cac.2020.26.1.063.