과제정보
This work was supported by Underwater Near-Field Explosion Research Lab funded by Defense Acquisition Program Administration under Grant UD180001DD.
참고문헌
- Aquelet, N., Souli, M., Gabrys, J. and Olovson, L. (2003), "A new ALE formulation for sloshing analysis", Struct. Eng. Mech., 16(4), 423-440. http://dx.doi.org/10.12989/sem.2003.16.4.423.
- Barras, G., Souli, M., Aquelet, N. and Couty, N. (2012), "Numerical simulation of underwater explosions using an ALE method. The pulsating bubble phenomena", Ocean Eng., 41, 53-66. https://doi.org/10.1016/j.oceaneng.2011.12.015.
- Bjorno, L. and Levin, P. (1976), "Underwater explosion research using small amounts of chemical explosives", Ultrasonics, 14(6), 263-267. https://doi.org/10.1016/0041-624X(76)90033-0.
- Brett, J. M., Yiannakopoulos, G. and Van der Schaaf, P. J. (2000), "Time-resolved measurement of the deformation of submerged cylinders subjected to loading from a nearby explosion", J. Impact Eng., 24(9), 875-890. https://doi.org/10.1016/S0734-743X(00)00023-3
- Bruce, G.J. and Eyres, D.J. (2012), Ship Construction: Butterworth-Heinemann, Oxford, United Kingdom.
- Cranz, K.J. (1936), Lehrbuch der Ballistik: Erganzungen zum Band I, 5. Aufl. (1925), Band II (1926) und Band III, 2. Aufl.(1927), J. Springer, Berlin, German.
- Hadianfard, M. A. and Farahani, A. (2012), "On the effect of steel columns cross sectional properties on the behaviours when subjected to blast loading", Struct. Eng. Mech., 44(4), 449-463. https://doi.org/10.12989/sem.2012.44.4.449
- Hammond, L. and Saunders, D.S. (1997), The Applicability of Scaling Laws to Underwater Shock Tests, DSTO Aeronautical and Maritime Research Laboratory, Australia.
- Hawass, A., Mostafa, H. and Elbeih, A. (2015), "Multi-layer protective armour for underwater shock wave mitigation", Defence Technol., 11(4), 338-343. https://doi.org/10.1016/j.dt.2015.04.006.
- Hopkinson, B. (1915), British Ordnance Board Minutes 13565, The National Archives, Kew, UK, 11.
- Hung, C., Hsu, P. and Hwang-Fuu, J. (2005), "Elastic shock response of an air-backed plate to underwater explosion", J. Impact Eng., 31(2), 151-168. https://doi.org/10.1016/j.ijimpeng.2003.10.039.
- Hung, C., Lin, B., Hwang-Fuu, J. and Hsu, P. (2009), "Dynamic response of cylindrical shell structures subjected to underwater explosion", Ocean Eng., 36(8), 564-577. https://doi.org/10.1016/j.oceaneng.2009.02.001.
- Itoh, S., Hamashima, H., Murata, K. and Kato, Y. (2002), "Determination of JWL parameters from underwater explosion test", the 12th International Detonation Symposium, San Diego, California, August.
- Kim, D. K., Ng, W. C. K. and Hwang, O. (2018), "An empirical formulation to predict maximum deformation of blast wall under explosion", Struct. Eng. Mech., 68(2), 237-245. https://doi.org/10.12989/sem.2018.68.2.237.
- Kim, J.H., Shin, H.C. and Park, M.K. (2005), "Application of Arbitrary Lagrangian-Eulerian Technique for Air Explosion Structural Analysis for Naval Ships Using LS-DYNA", J. Ship Ocean Technol., 9(1), 38-46.
- Klaseboer, E., Hung, K., Wang, C., Wang, C., Khoo, B., Boyce, P., Debono, S. and Charlier, H. (2005), "Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure", J. Fluid Mech., 537, 387. https://doi.org/10.1017/S0022112005005306.
- Koli, S., Chellapandi, P., Rao, L. B. and Sawant, A. (2020), "Study on JWL equation of state for the numerical simulation of nearfield and far-field effects in underwater explosion scenario", Eng. Sci. Technol., 23(4), https://doi.org/10.1016/j.jestch.2020.01.007.
- Li, G.Q., Yang, T.C. and Chen, S.W. (2009), "Behavior and simplified analysis of steel-concrete composite beams subjected to localized blast loading", Struct. Eng. Mech., 32(2), 337-350. https://doi.org/10.12989/sem.2009.32.2.337
- Li, J. and Rong, J.L. (2012), "Experimental and numerical investigation of the dynamic response of structures subjected to underwater explosion", European J. Mech. B/Fluids, 32, 59-69. https://doi.org/10.1016/j.oceaneng.2009.02.001.
- Li, P. and Xu, G.-g. (2006), "Approximate Calculation of Underwater Explosion Shock Wave Propagation", Chinese J. Explosives Propellants, 29(4), 21. https://doi.org/10.3969/j.issn.1007-7812.2006.04.006
- Li, Q. and Jones, N. (2000), "On dimensionless numbers for dynamic plastic response of structural members", Archive of Appl. Mech., 70(4), 245-254. https://doi.org/10.1007/s004199900072.
- Liang, C.-C. and Tai, Y.-S. (2006), "Shock responses of a surface ship subjected to noncontact underwater explosions", Ocean Eng., 33(5-6), 748-772. https://doi.org/10.1016/j.oceaneng.2005.03.011.
- Liu, N., Wu, W., Zhang, A. and Liu, Y. (2017), "Experimental and numerical investigation on bubble dynamics near a free surface and a circular opening of plate", Phys. Fluids, 29(10), 107102. https://doi.org/10.1063/1.4999406.
- Lou, Y.F., Luo, C. and Jin, X.L. (2015), "Numerical simulations of interactions between solitary waves and elastic seawalls on rubble mound breakwaters", Struct. Eng. Mech., 53(3), 393-410. https://doi.org/10.12989/sem.2015.53.3.393
- Lu, Y. (2009), "Modelling of concrete structures subjected to shock and blast loading: an overview and some recent studies", Struct. Eng. Mech., 32(2), 235-249. https://doi.org/10.12989/sem.2009.32.2.235.
- McLean, M., Hill, J., Cobb, R. and Randall, F. (1994), "Modal Test of John Paul Jones (DDG‐53) Mast and Mast‐Mounted Antennas", Naval Eng. J., 106(2), 110-117. https://doi.org/10.1111/j.1559-3584.1994.tb02826.x.
- Neuberger, A., Peles, S. and Rittel, D. (2007a), "Scaling the response of circular plates subjected to large and close-range spherical explosions, Part I: Air-blast loading", J. Impact Eng., 34(5), 859-873. https://doi.org/10.1016/j.ijimpeng.2006.04.001.
- Neuberger, A., Peles, S. and Rittel, D. (2007b), "Scaling the response of circular plates subjected to large and close-range spherical explosions. Part II: Buried charges", J. Impact Eng., 34(5), 874-882. https://doi.org/10.1016/j.ijimpeng.2006.04.002.
- Ngo, T. and Mendis, P. (2009), "Modelling the dynamic response and failure modes of reinforced concrete structures subjected to blast and impact loading", Struct. Eng. Mech., 32(2), 269-282. https://doi.org/10.12989/sem.2009.32.2.269
- Otsuka, M., Matsui, Y., Murata, K., Kato, Y. and Itoh, S. (2004), "A study on shock wave propagation process in the smooth blasting technique", Livermore Software Technology Corporation, Livermore, CA, USA.
- Park, J. W. (2012), "Underwater explosion testing of catamaran-like structure vs. simulation and feasibility of using scaling law", M.Sc. Dissertation, Korea Advanced Institute of Science and Technology, Daejeon, Korea.
- Park, S.W. and Cho, J.R. (2012), "Adaptive fluid-structure interaction simulation of large-scale complex liquid containment with two-phase flow", Struct. Eng. Mech., 41(4), 559-573. https://doi.org/10.12989/sem.2012.41.4.559.
- Rajendran, R. and Narasimhan, K. (2001), "Linear elastic shock response of plane plates subjected to underwater explosion", J. Impact Eng., 25(5), 493-506. https://doi.org/10.1016/S0734-743X(00)00056-7.
- Rajendran, R. and Narasimhan, K. (2006), "Deformation and fracture behaviour of plate specimens subjected to underwater explosion-A review", J. Impact Eng., 32(12), 1945-1963. https://doi.org/10.1016/j.ijimpeng.2005.05.013.
- Rezaei, M.J., Gerdooei, M. and Nosrati, H.G. (2020), "Blast resistance of a ceramic-metal armour subjected to air explosion: A parametric study", Struct. Eng. Mech., 74(6), 737-745. https://doi.org/10.12989/sem.2020.74.6.737.
- Shin, Y. S. and Schneider, N. A. (2003), "Ship shock trial simulation of USS Winston S. Churchill (DDG 81): Modeling and simulation strategy and surrounding fluid volume effects", 74th Shock and Vibration Symposium, San Diego, California, USA. October.
- Sohn, J.M., Kim, S.J., Seong, D.J., Kim, B.J., Ha, Y.C., Seo, J.K. and Paik, J.K. (2014), "Structural impact response characteristics of an explosion-resistant profiled blast walls in arctic conditions", Struct. Eng. Mech., 51(5), 755-771. https://doi.org/10.12989/sem.2014.51.5.755.
- Souli, M. h. and Benson, D. J. (2013), Arbitrary Lagrangian Eulerian and Fluid-Structure Interaction: Numerical Simulation, John Wiley and Sons, NJ, USA.
- Wang, W., Zhang, D., Lu, F., Wang, S.C. and Tang, F. (2012), "Experimental study on scaling the explosion resistance of a oneway square reinforced concrete slab under a close-in blast loading", J. Impact Eng., 49, 158-164. https://doi.org/10.1016/j.ijimpeng.2012.03.010.
- Yao, S., Zhang, D., Lu, F., Chen, X. and Zhao, P. (2017), "A combined experimental and numerical investigation on the scaling laws for steel box structures subjected to internal blast loading", Impact Eng., 102, 36-46. https://doi.org/10.1016/j.ijimpeng.2016.12.003.
- Yi, N. H., Kim, S.B., Nam, J. W., Ha, J. H. and Kim, J.H. J. (2011), "Debonding failure analysis of FRP-retrofitted concrete panel under blast loading", Struct. Eng. Mech., 38(4), 479-501. http://dx.doi.org/10.12989/sem.2011.38.4.479.
- Zhang, A.M., Zeng, L.Y., Wang, S.P. and Chen, Y. (2011), "The evaluation method of total damage to ship in underwater explosion", Appl. Ocean Res., 33(4), 240-251. https://doi.org/10.1016/j.apor.2011.06.002.
- Zhang, Z.H., Wang, Y., Zhang, L.J., Yuan, J.H. and Zhao, H.F. (2011), "Similarity research of anomalous dynamic response of ship girder subjected to near field underwater explosion", Appl. Math. Mech., 32(12), 1491-1504. https://doi.org/10.1007/s10483-011-1518-9.
- Zhao, Y.P. (1998), "Suggestion of a new dimensionless number for dynamic plastic response of beams and plates", Arch. Appl. Mech., 68(7-8), 524-538. https://doi.org/10.1007/s004190050184.