Acknowledgement
The financial supports from the National Natural Science Foundation of China (51738007, 51808099) and the National Key R&D Program of China (2016YFC0701108) are gratefully acknowledged. The authors also acknowledge the China Meteorological Administration for offering the recorded wind data.
References
- Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magnetoelastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
- AASHTO-LRFD (2004), Bridge Design Specifications, American Association of State Highway and Transportation Officials, Washington, D.C., USA.
- Aas-Jakobsen, K. and Lenschow, R. (1973), "Behavior of reinforced columns subjected to fatigue loading", ACI J., 70(3), 199-206.
- Akgoz, B. and Civalek, O. (2011). "Nonlinear vibration analysis of laminated plates restingon nonlinear two-parameters elastic foundations", Steel Compos. Struct., 11(5), 403-421. https://doi.org/10.12989/scs.2011.11.5.403
- Augusti, G. and Ciampoli, M. (2008), "Performance-Based Design in risk assessment and reduction", Prob. Eng. Mech., 23(4), 496-508. https://doi.org/10.1016/j.probengmech.2008.01.007.
- Barbato, M., Gu, Q. and Conte, J.P. (2010), "Probabilistic pushover analysis of structural and soil-structure systems", J. Struct. Eng., 136(11), 1330-1341. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000231.
- Bastidas-Arteaga, E., Bressolette, P., Chateauneuf, A. and Sánchez-Silva, M. (2009), "Probabilistic lifetime assessment of RC structures under coupled corrosion-fatigue deterioration processes", Struct. Saf., 31, 84-96. https://doi.org/10.1016/j.strusafe.2008.04.001.
- Bigaud, D. and Ali, O. (2014), "Time-variant flexural reliability of RC beams with externally bonded CFRP under combined fatigue-corrosion actions", Reliability Eng. System Saf., 131, 257-270. https://doi.org/10.1016/j.ress.2014.04.016.
- Biondini, F. and Frangopol, D.M. (2016),"Life-Cycle Performance of Deteriorating Structural Systems under Uncertainty: Review", J. Struct. Eng., 142(9), F4016001. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001544.
- Broutman, L.J. and Sahu, S. (1972), "A new theory to predict cumulative fatigue damage in fiberglass reinforced plastics", In Composite Materials: Testing and Design (second conference), West Conshohocken, PA.
- Caracoglia, L. (2014), "A stochastic model for examining along-wind loading uncertainty and intervention costs due to wind-induced damage on tall buildings", Eng. Struct., 78, 121-132. https://doi.org/10.1016/j.engstruct.2014.07.023.
- Carta, J.A., Ramirez, P. and Velazquez, S. (2009), "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands", Renewable Sustainable Energy Reviews, 13, 933-955. https://doi.org/10.1016/j.rser.2008.05.005.
- CECS 230 (2008), Specification for Design of Steel-Concrete Mixed Structure Of Tall Buildings, Professional Standard of the People's Republic of China. China Planning Press, Beijing, China.
- Chen, Z.W., Xu, Y.L., Xia, Y., Li, Q. and Wong, K.Y. (2011), "Fatigue analysis of long-span suspension bridges under multiple loading: Case study", Eng. Struct., 33, 3246-3256. https://doi.org/10.1016/j.engstruct.2011.08.027.
- Civalek, O. (2009). "Fundamental frequency of isotropic and orthotropic rectangular plates with linearly varying thickness by discrete singular convolution method", Appl. Math. Modelling, 33(10), 3825-3835. https://doi.org/10.1016/j.apm.2008.12.019
- Civalek, O. and Acar, M.H. (2007). "Discrete singular convolution method for the analysis of mindlin plates on elastic foundations", J. Press. Vessel Pip., 84(9), 527-535. https://doi.org/10.1016/j.ijpvp.2007.07.001
- Cornell, C.A., Jalayer, F., Hamburger, R.O. and Foutch, D.A. (2002), "Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines", J. Struct. Eng., 128, 526-533. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:4(526).
- Ding, Y., Song, X. and Zhu, H.T. (2017), "Probabilistic progressive collapse analysis of steel-concrete composite floor systems", J. Constr. Steel Res., 129, 129-140. https://doi.org/10.1016/j.jcsr.2016.11.009.
- Frangopol, D.M. and Soliman, M. (2015). "Life-cycle of structural systems: recent achievements and future directions", Struct. Infrast. Eng. 1-20. https://doi.org/10.1080/15732479.2014.999794
- Gardoni, P., Bracci, J.M. and Ramamoorthy, S.K. (2006), "Probabilistic Demand Models and Fragility Curves for Reinforced Concrete Frames", J. Struct. Eng., 132(10), 1563-1572. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:10(1563).
- GB 50009 (2012), Load Code for The Design of Building Structures, National Standards of the People's Republic of China. China Architecture and Building Press, Beijing, China.
- GB 50011 (2010), Code for Seismic Design of Buildings, National Standards of the People's Republic of China. China Architecture and Building Press, Beijing, China.
- GB 50017 (2012), Code for Design of Steel Structure, National Standards of the People's Republic of China. China Planning Press, Beijing, China.
- Ghosh, J. and Padgett, J.E. (2010), "Aging considerations in the development of time-dependent seismic fragility curves", J. Struct. Eng., 136, 1497-1511. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000260.
- Goodman, J. (1930), Mechanics Applied to Engineering, Longmans Green, London, London, United Kingdom.
- Gu, Q., Zona, A., Peng, Y. and Dall'Asta, A. (2014), "Effect of buckling-restrained brace model parameters on seismic structural response", J. Constr. Steel Res., 98(7), 100-113. https://doi.org/10.1016/j.jcsr.2014.02.009.
- Hamilton, III. H.R., Riggs, G.S. and Puckett, J.A. (2000), "Increased damping in cantilevered traffic signal structures", J Struct. Eng., 126, 530-537. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:4(530).
- Han, L.H., Yao, G.H. and Tao, Z. (2007), "Performance of concrete-filled thin-walled steel tubes under pure torsion", Thin-Walled Struct., 45, 24-36. https://doi.org/10.1016/j.tws.2007.01.008.
- Hao, X.Y., Li, H.N., Li, G. and Makino, T. (2013), "Experimental investigation of steel structure with innovative H-type steel unbuckling braces", Struct. Design Tall Spec. Build., 23(14), 1064-1082. https://doi.org/10.1002/tal.1108.
- Hobbacher, A. (2009), Recommendations for Fatigue Design of Welded Joints and Components, Welding Research Council, New York, NY, USA.
- Holmen, J.O. (1982), "Fatigue of concrete by constant and variable amplitude loading", ACI Spec. Publ., 75, 71-110.
- Huang, G.Q., Liao, H.L. and Li, M.S. (2013), "New formulation of Cholesky decomposition and applications in stochastic simulation", Prob. Eng. Mech., 34(4), 40-47. https://doi.org/10.1016/j.probengmech.2013.04.003.
- IEC61400-1 (2005), Wind Turbines - Part 1: Design Requirements, International Electrotechnical Commission (IEC), Ed. 3.
- Isojeh, B. (2017), "Fatigue Damage Analysis of Reinforced Concrete Structural Elements", Ph.D. Dissertation, University of Toronto, Toronto.
- Jang, Y.J., Choi, C.W., Lee, J.H. and Kang, K.W. (2015), "Development of fatigue life prediction method and effect of 10-minute mean wind speed distribution on fatigue life of small wind turbine composite blade", Renewable Energy, 79, 187-198. https://doi.org/10.1016/j.renene.2014.10.006.
- Jia, J. (2011), "Wind and structural modelling for an accurate fatigue life assessment of tubular structures", Eng. Struct., 33, 477-491. https://doi.org/10.1016/j.engstruct.2010.11.004.
- Ju, B.S., Jung, W.Y. and Ryu, Y.H. (2013). "Seismic fragility evaluation of piping system installed in critical structures", Struct. Eng. Mech., 46(3), 337-352. https://doi.org/10.12989/sem.2013.46.3.337.
- Ju, S. H. and Lin, M. C. (1999). "Comparison of building analyses assuming rigid or flexible floors", J. Struct. Eng. 125(1), 25-31. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:1(25)
- Kaimal, J.C., Wyngaard, J.C., Izumi, Y. and Cote, O.R. (1972), Spectral Characteristics of Surface-Layer Turbulence, Wiley, New York, NY, USA.
- Kareem, A. (1987), "Wind effects on structures: a probabilistic viewpoint", Prob. Eng. Mech., 2(4), 166-200. https://doi.org/10.1016/0266-8920(87)90009-9.
- Kibboua, A., Naili, M., Benouar, D. and Kehila, F. (2011). "Analytical fragility curves for typical Algerian reinforced concrete bridge piers", Struct. Eng. Mech., 39(3), 411-425. https://doi.org/10.12989/sem.2011.39.3.411.
- Lemaitre, J. (1985), "A Continuous Damage Mechanics Model for Ductile Fracture", J. Eng. Materials Tech., 107, 83-89. https://doi.org/10.1115/1.3225775.
- Li, C., Hao, H., Li, H.N. and Bi, K.M. (2015), "Theoretical modeling and numerical simulation of seismic motions at seafloor", Soil Dyn. Earthquake Eng., 77, 220-225. https://doi.org/10.1016/j.soildyn.2015.05.016.
- Li, C., Hao, H., Li, H.N. and Bi, K.M. (2016), "Seismic fragility analysis of reinforced concrete bridges with chloride induced corrosion subjected to spatially varying ground motions", Int. J. Struct. Stability Dyn., 16(5), 1550010. https://doi.org/10.1142/S0219455415500108.
- Li, C., Hao, H, Li, H.N., Bi, K.M. and Chen, B.K. (2017), "Modeling and simulation of spatially correlated ground motions at multiple onshore and offshore sites", J. Earthquake Eng., 21(3), 359-383. https://doi.org/10.1080/13632469.2016.1172375.
- Li, C., Li, H.N., Hao, H, Bi, K.M. and Chen, B.K. (2018). "Seismic fragility analyses of sea-crossing cable-stayed bridges subjected to multi-support ground motions on offshore sites", Eng. Struct., 165, 441-456. https://doi.org/10.1016/j.engstruct.2018.03.066.
- Li, L.X., Li, H.N. and Li, C. (2018). "Seismic fragility assessment of self-centering RC frame structures considering maximum and residual deformations", Struct. Eng. Mech., 68(6), 677-689. https://doi.org/10.12989/sem.2018.68.6.677.
- Liew, J.Y.R. (2001). "State-of-the-art of advanced inelastic analysis of steel and composite structures", steel compos. struct., 1(3), 341-354. https://doi.org/10.12989/scs.2001.1.3.341
- Liu, J.B., Liu, Y.B. and Liu, H. (2010), "Seismic fragility analysis of composite frame structure based on performance", Earthquake Sci., 23(1), 45-52. https://doi.org/10.1007/s11589-009-0049-7.
- Ma, H., Li, S.Z., Li, Z., Liu, Y.H., Dong, J. and Zhang, P. (2018). "Shear behavior of composite frame inner joints of srrc column-steel beam subjected to cyclic loading", Steel Composite Struct. 27(4) https://doi.org/10.12989/scs.2018.27.4.495
- Mander, J.B., Priestley, M.J.N. and Park, R. (1988), "Theoretical Stress‐Strain Model for Confined Concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).
- Mazzoni, S., McKenna, F., Scott, M.H. and Fenves, G.L. (2006), The open system for earthquake engineering simulation (OpenSEES) user command-language manual; Pacific Earthquake Engineering Research Center University of California, Berkeley; USA.
- Mwafy, A.M. and Elnashai, A.S. (2001), "Static pushover versus dynamic collapse analysis of RC buildings", Eng. Struct., 23, 407-424. https://doi.org/10.1016/S0141-0296(00)00068-7.
- Nallasivam, K., Talukdar, S. and Dutta, A. (2008). "Fatigue life prediction of horizontally curved thin walled box girder steel bridges", Struct. Eng. Mech., 28(4), 387-410. https://doi.org/10.12989/sem.2008.28.4.387.
- Nieslony, A. (2009), "Determination of fragments of multiaxial service loading strongly influencing the fatigue of machine components", Mech. Systems Signal Proc., 23, 2712-2721. https://doi.org/10.1016/j.ymssp.2009.05.010.
- Pagnini, L. and Repetto, M.P. (2012), "The role of parameter uncertainties in the damage prediction of the alongwind-induced fatigue", J. Wind Eng. Ind. Aerodyn., 104, 227-238. https://doi.org/10.1016/j.jweia.2012.03.027.
- Philippidis, T.P. and Passipoularidis, V.A. (2007), "Residual strength after fatigue in composites: Theory vs. experiment", Int. J. Fatigue., 29, 2104-2116. https://doi.org/10.1016/j.ijfatigue.2007.01.019.
- Prasad, G.G. and Swagata, B. (2013), "The impact of flood-induced scour on seismic fragility characteristics of bridges", J. Earthquake. Eng., 17(6), 803-828. https://doi.org/10.1080/13632469.2013.771593.
- Priestley, M.J.N., Calvi, G.M. and Kowalsky, M.J. (2007), Displacement-Based Seismic Design of Structures, IUSS Press, Pavia, Italy.
- Repetto, M.P. and Solari G. (2007), "Wind-induced fatigue of structures under neutral and non-neutral atmospheric conditions", J. Wind Eng. Ind. Aerodyn., 95, 1364-1383. https://doi.org/10.1016/j.jweia.2007.02.012.
- Repetto, M.P. and Solari G. (2009), "Closed form solution of the alongwind-induced fatigue damage to structures", Eng. Struct., 31, 2414-2425. https://doi.org/10.1016/j.engstruct.2009.05.016.
- Repetto, M.P. and Solari, G. (2010), "Wind-induced fatigue collapse of real slender structures", Eng. Struct., 32, 3888-3898. https://doi.org/10.1016/j.engstruct.2010.09.002.
- Repetto, M.P. and Torrielli, A. (2017), "Long term simulation of wind-induced fatigue loadings", Eng. Struct., 132, 551-561. https://doi.org/10.1016/j.engstruct.2016.11.057.
- Ronold, K.O., Wedel-Heinen, J. and Christensen, C.J. (1999), "Reliability-based fatigue design of wind-turbine rotor blades", Eng. Struct., 21, 1101-1114. https://doi.org/10.1016/S0141-0296(98)00048-0.
- Saffarini, H.S. and Qudaimat, M.M. (1992). "In-plane floor deformations in RC structures", J. Struct. Eng. 118(11), 3089-3102. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:11(3089).
- Sanchez-Silva, M., Klutke, G.A. and Rosowsky, D.V. (2011). "Life-cycle performance of structures subject to multiple deterioration mechanisms", Struct. Saf. 33(3), 206-217. https://doi.org/10.1016/j.strusafe.2011.03.003
- Shen, Z. and Dong, B. (1997), "An experiment-based cumulative damage mechanics model of steel under cyclic loading", Advances Struct. Eng., 1, 39-46. https://doi.org/10.1177/136943329700100105.
- Shome, N. and Cornell, C.A. (1999), "Probabilistic seismic demand analysis of nonlinear structures", Report No. RMS-35, Dept. of Civil and Envirnomental Engineering; Stanford University, Stanford, California.
- Stein, M. (1987), "Large sample properties of simulations using Latin hypercube sampling", Technometrics, 29(2), 143-151. https://doi.org/10.1080/00401706.1987.10488205.
- Sunderland, K.M., Mills, G. and Conlon, M.F. (2013), "Estimating the wind resource in an urban area: A case study of micro-wind generation potential in Dublin, Ireland", J. Wind Eng. Ind. Aerodyn., 118(7), 44-53. https://doi.org/10.1016/j.jweia.2013.04.002.
- Sung, Y.C. and Su, C.K. (2011), "Time-dependent seismic fragility curves on optimal retrofitting of neutralised reinforced concrete bridges", Struct. Infrastruct. Eng., 7, 797-805. https://doi.org/10.1080/15732470902989720.
- Tarar, W., Herman Shen, M. H., George, T. and Cross, C. (2010). "A new finite element procedure for fatigue life prediction of AL6061 plates under multiaxial loadings", Struct. Eng. Mech., 35(5), 571-592. https://doi.org/10.12989/sem.2010.35.5.571.
- Tepfers, R. and Kutti, T. (1979), "Fatigue strength of plain, ordinary, and lightweight concrete", ACI J., 76(5), 635-652.
- Torrenti, J.M., Pijaudier-Cabot, G. and Reynouard, J. (2010), Mechanical Behaviour of Concrete, John Wiley and Sons, New York, NY, USA.
- Unobe, I.D. and Sorensen, A.D. (2015), "Multi-hazard analysis of a wind turbine concrete foundation under wind fatigue and seismic loadings", Struct. Saf., 57, 26-34. https://doi.org/10.1016/j.strusafe.2015.07.003.
- Wang, J. F. and Li, G. Q. (2007). "Stability analysis of semi-rigid composite frames", Steel Compos. Struct., 7(2), 119-133. https://doi.org/10.12989/scs.2007.7.2.119
- Xu, Y.L. (1997), "Fatigue damage estimation of metal roof cladding subject to wind loading", J. Wind Eng. Ind. Aerodyn., 72, 379-388. https://doi.org/10.1016/S0167-6105(97)00254-7.
- Xu, Y.L., Liu, T.T. and Zhang, W.S. (2009), "Buffeting-induced fatigue damage assessment of a long suspension bridge", Int. J. Fatigue, 31, 575-586. https://doi.org/10.1016/j.ijfatigue.2008.03.031.
- Yang, C., Yang, J.F., Su, M.Z. and Liu, C.Z. (2016), "Numerical study on seismic behaviours of ConXL biaxial moment connection", J. Constr. Steel Res., 121, 185-201. https://doi.org/10.1016/j.jcsr.2016.02.013.