참고문헌
- Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magnetoelastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
- Amjadi, M., Kyung, K.U., Park, I. and Sitti, M. (2016), "Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review", Adv. Funct. Mater., 26(11), 1678-1698. https://doi.org/10.1002/adfm.201504755.
- Amjadi, M., Yoon, Y. J., and Park, I. (2015), "Ultra-Stretchable and Skin-Mountable Strain Sensors Using Carbon Nanotubes-Ecoflex Nanocomposites", Nanotechnology., 26(37), 375501. https://doi.org/10.1088/0957-4484/26/37/375501.
- Anani, Y., and Rahimi, G.H., (2015), "Stress Analysis of Thick Pressure Vessel Composed of Functionally Graded Incompressible Hyperelastic Materials", Int. J. Mech. Sci., 104, 1-7. https://doi.org/10.1016/j.ijmecsci.2015.09.012.
- Antonelli, M. G., Beomonte Zobel, P., Durante, F. and Raparelli, T. (2019), "Additive Manufacturing Applications on Flexible Actuators for Active Orthoses and Medical Devices", J. Healthc. Eng., 2019. https://doi.org/10.1155/2019/5659801.
- Arani, A.G., Bidgoli, A.H., Ravandi, A.K., Roudbari, M.A., Amir, S., and Azizkhani, M.B. (2013), "Induced nonlocal electric wave propagation of boron nitride nanotubes", J. Mech. Sci. Tech., 27(10), 3063-3071. https://doi.org/10.1007/s12206-013-0705-7
- Azami, O., Morisaki, D., Miyazaki, T., Kanno, T. and Kawashima, K. (2019), "Development of the Extension Type Pneumatic Soft Actuator with Built-in Displacement Sensor", Sensors Actuators, A Phys., 300, 111623. https://doi.org/10.1016/j.sna.2019.111623.
- Aziz, Shahid, Kyung-chae Jung and Seung-hwan Chang (2019), "Stretchable Strain Sensor Based on a Nanocomposite of Zinc Stannate Nanocubes and Silver Nanowires", Compos. Struct., 224, 111005. https://doi.org/10.1016/j.compstruct.2019.111005.
- Azizkhani, M.B., Rastgordani, S., Anaraki, A.P., Kadkhodapour, J. and Hadavand, B.S. (2019), "Highly Sensitive and Stretchable Strain Sensors Based on Chopped Carbon Fibers Sandwiched between Silicone Rubber Layers for Human Motion Detections", J. Compos. Mater., 54(3), 423-434. https://doi.org/10.1177/0021998319855758.
- Azizkhani, M.B., Kadkhodapour, J., Anaraki, A.P. and Shirkavand Hadavand, B. (2020), "Study of body movement monitoring utilizing nano-composite strain sensors containing carbon nanotubes and silicone rubber", Steel comp. struct., 35(6), 779-788. https://doi.org/10.12989/scs.2020.35.6.779.
- Azizkhani, M.B., Kadkhodapour, J., Rastgordani, S., Anaraki, A. P. and Hadavand, B.S. (2019), "Highly Sensitive, Stretchable Chopped Carbon Fiber/Silicon Rubber Based Sensors for Human Joint Motion Detection", Fibers Polym., 20(1), 35-44. https://doi.org/10.1007/s12221-019-8662-0.
- Balubaid, M., Tounsi, A., Dakhel, B. and Mahmoud, S.R., (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comp. Concrete, 24(6), 579-586. https://doi.org/10.12989/cac.2019.24.6.579
- Bien-aime, L.K.M., Blaise, B.B. and Beda, T. (2020), "Characterization of Hyperelastic Deformation Behavior of Rubber-like Materials", SN Appl. sci., 2(4). https://doi.org/10.1007/s42452-020-2355-6.
- Boussoula, A., Boucham, B., Bourada, M., Bourada, F., Tounsi, A., Bousahla, A.A., and Tounsi, A., (2020), "A simple nth-order shear deformation theory for thermomechanical bending analysis of different configurations of FG sandwich plates", Smart Struct. Sys., 25(2), 197-218. https://doi.org/10.12989/sss.2020.25.2.197
- Bousahla, A.A., Bourada, F., Mahmoud, S.R., Tounsi, A., Algarni, A., Bedia, E.A. and Tounsi, A., (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comp. Concrete, 25(2), 155-166. https://doi.org/10.12989/cac.2020.25.2.155
- Chen, J., Zhu, Y. and Jiang, W. (2020), "A Stretchable and Transparent Strain Sensor Based on Sandwich-like PDMS / CNTs / PDMS Composite Containing an Ultrathin Conductive CNT Layer", Compos. Sci. Technol., 186, 107938. https://doi.org/10.1016/j.compscitech.2019.107938.
- Chikr, S.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Bedia, E.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A., (2020), "A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin's approach", Geom. Eng., 21(5), 471-487. https://doi.org/10.12989/gae.2020.21.5.471
- Cho, K. H., Song, M. G., Yang, S. Y., Kim, Y., Jung, H., Moon, H., Koo, J.C., Nam, J. and Choi, H. R. (2017), "Super Stretchable Soft Actuator Made of Twisted and Coiled Spandex Fiber", Electroact. Polym. Actuators Devices., 10163, 101630W. https://doi.org/10.1117/12.2261611.
- Chu, J., Marsden, A. J., Young, R. J. and Bissett, M. A. (2019), "Graphene-Based Materials as Strain Sensors in Glass Fiber / Epoxy Model Composites", ACS Appl. Mater. Interfaces., 11, 31338-31345. https://doi.org/10.1021/acsami.9b09862.
- Cohen, D. J., Mitra, D., Peterson, K. and Maharbiz, M. M. (2012), "A Highly Elastic, Capacitive Strain Gauge Based on Percolating Nanotube Networks", Nano Lett., 12(4), 1821-1825. https://doi.org/10.1021/nl204052z.
- Deng, H., Ji, M., Yan, D., Fu, S., Duan, L., Zhang, M. and Fu, Q. (2014), "Towards Tunable Resistivity-Strain Behavior through Construction of Oriented and Selectively Distributed Conductive Networks in Conductive Polymer Composites", J. Mater. Chem. A., 2(26), 10048-58. https://doi.org/10.1039/C4TA01073F.
- Roh, E., Hwang, B.U., Kim, D., Kim, B.Y. and Lee, N.E., (2015), "Stretchable, transparent, ultrasensitive, and patchable strain sensor for human-machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers", ACS Nano., 6, 6252-6261. https://doi.org/10.1021/acsnano.5b01613.
- Giffney, T., Bejanin, E., Kurian, A. S., Travas-Sejdic, J. and Aw, K. (2017), "Highly Stretchable Printed Strain Sensors Using MultiWalled Carbon Nanotube/Silicone Rubber Composites", Sensors Actuators A Phys., 259, 44-49. https://doi.org/10.1016/j.sna.2017.03.005.
- Ghorbanpour, A.A., Karamali, R.A., Roudbari, M.A., Azizkhani, M.B., and HAFIZI, B.A., (2015), "Axial and transverse vibration of SWBNNT system coupled Pasternak foundation under a moving nanoparticle using Timoshenko beam theory", J. Solid Mech., 7(3), 239-254.
- Hajmohammad, M. H., Azizkhani, M. B., and Kolahchi, R. (2018), "Multiphase nanocomposite viscoelastic laminated conical shells subjected to magneto-hygrothermal loads: Dynamic buckling analysis", J. Mech. Sci., 137, 205-213. https://doi.org/10.1016/j.ijmecsci.2018.01.026
- Hashiguchi, K. (2019), "Multiplicative Hyperelastic-Based Plasticity for Finite Elastoplastic Deformation/Sliding: A Comprehensive Review", Arch. Comput. Methods Eng., 26. https://doi.org/10.1007/s11831-018-9256-5.
- Ho, M. D., Ling, Y., Yap, L. W., Wang, Y., Dong, D., Zhao, Y. and Cheng, W. (2017), "Percolating Network of Ultrathin Gold Nanowires and Silver Nanowires toward 'Invisible' Wearable Sensors for Detecting Emotional Expression and Apexcardiogram", Adv. Funct. Mater., 27(25), 1-9. https://doi.org/10.1002/adfm.201700845.
- Homberg, B. S., Katzschmann, R. K., Dogar, M. R. and Rus, D. (2019), "Robust Proprioceptive Grasping with a Soft Robot Hand", Auton Robots., 43(3), 681-96. https://doi.org/10.1007/s10514-018-9754-1.
- Huang, J., Li, D., Zhao, M., Mensah, A., Lv, P., Tian, X., Huang, F., Ke, H. and Wei, Q. (2019), "Highly sensitive and stretchable cnt-bridged agnp strain sensor based on TPU electrospun membrane for human motion detection", Adv. Electron. Mater., 5(6), 1-8. https://doi.org/10.1002/aelm.201900241.
- Hussain, M., Naeem, M.N., Khan, M.S., and Tounsi, A. (2020), "Computer-aided approach for modelling of FG cylindrical shell sandwich with ring supports", Comp. Concrete, 25(5), 411-425. https://doi.org/10.12989/cac.2020.25.5.411
- Ju, M., Park, K., Moon, D., Park, C., and Sim, J. (2018), "On strain measurement of smart GFRP bars with built-in fiber Bragg grating sensor", Struct. Eng. Mech., 65(2), 155-162. https://doi.org/10.12989/sem.2018.65.2.155
- Junius Santoso, Erik H. Skorina, Marco Salerno, Sebastien de Rivaz, Jamie Paik, and Cagdas D. Onal. (2019), "Single Chamber Multiple Degree-of-Freedom Soft 11 12 Pneumatic Actuator Enabled by Adjustable Stiffness 13 Layers", Smart Mater. Struct., 28(3), 035012. https://doi.org/10.1088/1361-665X/aaf9c0
- Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Bedia, E.A., and Al-Osta, M.A., (2020), "A study on the structural behavior of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis", Comp. Concrete, 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037
- Song, K., Kim, S. and Cha, Y. (2020), "Soft electromagnetic actuator for assembly robots", Smart Mater. Struct., https://doi.org/10.1088/1361-6463/aad7de.
- Kaloop, M.R., Hwang, W.S., Elbeltagi, E., Beshr, A. and Hu, J.W., (2019), "Evaluation of Dorim-Goh bridge using ambient trucks through short-period structural health monitoring system", Struct. Eng. Mech., 69(3), 347-359. https://doi.org/10.12989/sem.2019.69.3.347
- Karami, B., Janghorban, M., and Tounsi, A., (2019), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comp, 35(4), 1297-1316. https://doi.org/10.1007/s00366-018-0664-9
- Khiloun, M., Bousahla, A.A., Kaci, A., Bessaim, A., Tounsi, A. and Mahmoud, S.R. (2019), "Analytical modeling of bending and vibration of thick advanced composite plates using a fourvariable quasi 3D HSDT", Eng. Comp, 36, 1-15. https://doi.org/10.1007/s00366-019-00732-1
- Koziol, M., Toron, B., Szperlich, P. and Jesionek, M. (2019), "Fabrication of a Piezoelectric Strain Sensor Based on SbSI Nanowires as a Structural Element of a FRP Laminate", Comp. Part B Eng., 157, 58-65. https://doi.org/10.1016/j.compositesb.2018.08.105.
- Kumpika, T.E., Kantarak, A. Sriboonruang, W. Tippo, S.W., Thongpan, W. and Pooseekheaw, P. (2020), "Stretchable and Compressible Strain Sensors for Gait Monitoring Constructed Using Carbon Nanotube / Graphene Composite Stretchable and Compressible Strain Sensors for Gait Monitoring Constructed Using Carbon Nanotube / Graphene Composite", Mat. Res. Exp., 7(3), 035006. https://doi.org/10.1088/2053-1591/ab748d
- Li, H., Yao, J., Zhou, P., Zhao, W., Xu, Y. and Zhao, Y., (2019), "Design and modeling of a high-load soft robotic gripper inspired by biological winding", Bioinspired. Biomim., 15(2), 026006. https://doi.org/10.1088/1748-3190/ab6033
- Liu, Y. Z., Hao, Z. W., Yu, J. X., Zhou, X. R., Lee, P. S., Sun, Y., Mu, Z.C. and Zeng, F. L. (2019), "A high-performance soft actuator based on a poly(vinylidene fluoride) piezoelectric bimorph", Smart Mater. Struct., 28(5), https://doi.org/10.1088/1361-665X/ab0844.
- Lu, N., Lu, C., Yang, S. and Rogers, J. (2012), "Highly Sensitive Skin-Mountable Strain Gauges Based Entirely on Elastomers", Adv. Funct. Mater., 22(19), 4044-4050. https://doi.org/10.1002/adfm.201200498.
- Luo, S. and Liu, T. (2013), "Structure-Property-Processing Relationships of Single-Wall Carbon Nanotube Thin Film Piezoresistive Sensors", Carbon., 59, 315-324. https://doi.org/10.1016/j.carbon.2013.03.024.
- Luo, Y. M., Chevalier, L., Monteiro, E., Yan, S. and Menary, G. (2020), "Simulation of the Injection Stretch Blow Molding Process: An Anisotropic Visco-Hyperelastic Model for Polyethylene Terephthalate Behavior", Polym. Eng. Sci., 60(4), 823-831. https://doi.org/10.1002/pen.25341.
- Mansouri, M R, and H Darijani. (2014), "Constitutive Modeling of Isotropic Hyperelastic Materials in an Exponential Framework Using a Self-Contained Approach", J. Solids Struct., 51 (25-26), 4316-26. https://doi.org/https://doi.org/10.1016/j.ijsolstr.2014.08.018.
- Matouk, H., Bousahla, A.A., Heireche, H., Bourada, F., Bedia, E.A., Tounsi, A., Mahmoud, S.R., Tounsi, A. and Benrahou, K.H. (2020), "Investigation on hygro-thermal vibration of P-FG and symmetric S-FG nanobeam using integral Timoshenko beam theory", Adv. Nano Res., 8(4), 293-305. https://doi.org/10.12989/anr.2020.8.4.293.
- Miriyev, A., Xia, B., Joseph, J.C. and Lipson, H. (2019), "Additive Manufacturing of Silicone Composites for Soft Actuation", 3D Print. Addit. Manuf., 6(6), 309-318. https://doi.org/10.1089/3dp.2019.0116.
- Mohamed, M. H., Wagdy, S. H., Atalla, M. A., Rehan Youssef, A. and Maged, S. A. (2020), "A Proposed Soft Pneumatic Actuator Control Based on Angle Estimation from Data-Driven Model", Proc. Inst. Mech. Eng. Part H J. Eng. Med. https://doi.org/10.1177/0954411920911277.
- Montazerian, H., Rashidi, A., Dalili, A., Najjaran, H., Milani, A. S. and Hoorfar, M. (2019), "Graphene-Coated spandex sensors embedded into silicone sheath for composites health monitoring and wearable applications", Small., 15(17), 1-12. https://doi.org/10.1002/smll.201804991.
- Mosadegh, B., Polygerinos, P., Keplinger, C., Wennstedt, S., Shepherd, R. F., Gupta, U., Shim, J., Bertoldi, K., Walsh, C. and Whitesides, G.M. (2014), "Pneumatic networks for soft robotics that actuate rapidly", Adv. Funct. Mater, 24(15), 2163-2170. https://doi.org/10.1002/adfm.201303288.
- Natarajan, E., Razif, M. R. M., Faudzi, A. A. M. and Palanikumar, K. (2020), "Evaluation of a Suitable Material for Soft Actuator through Experiments and FE Simulations", Int. J. Manuf. Mater. Mech. Eng., 10(2), 64-76. https://doi.org/10.4018/IJMMME.2020040104.
- Pinto, T., Cai, L., Wang, C. and Tan, X. (2017), "CNT-Based Sensor Arrays for Local Strain Measurements in Soft Pneumatic Actuators", Int. J. Intell. Robot. Appl. 1(2), 157-66. https://doi.org/10.1007/s41315-017-0018-6.
- Polygerinos, P., Lyne, S., Wang, Z., Nicolini, L. F., Mosadegh, B., Whitesides, G. M. and Walsh, C. J. (2013), "Towards a Soft Pneumatic Glove for Hand Rehabilitation", IEEE Int. Conf. Intell. Robot. Syst., 1512-1517. https://doi.org/10.1109/IROS.2013.6696549.
- Rahmani, M.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Bedia, E.A., Mahmoud, S.R., Benrahou, K.H. and Tounsi, A., (2020), "Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a fourunknown refined integral plate theory", Comp. Concrete, 25(3), 225-244. https://doi.org/10.12989/cac.2020.25.3.225
- Ren, L., Li, B., Song, Z., Liu, Q., Ren, L. and Zhou, X. (2019), "3D Printing of Structural Gradient Soft Actuators by Variation of Bioinspired Architectures", J. Mater. Sci., 54(8), 6542-6551. https://doi.org/10.1007/s10853-019-03344-8.
- Ren, M., Zhou, Y., Wang, Y., Zheng, G., Dai, K., Liu, C. and Shen, C. (2019), "Highly Stretchable and Durable Strain Sensor Based on Carbon Nanotubes Decorated Thermoplastic Polyurethane Fibrous Network with Aligned Wave-like Structure", Chem. Eng. J., 762-777. https://doi.org/10.1016/j.cej.2018.12.025.
- Rukhlenko, I. D., Farajikhah, S., Lilley, C., Georgis, A., Large, M., and Fleming, S. (2020), "Performance Optimization of Polymer Fibre Actuators for Soft Robotics", Polymers., 12(2), https://doi.org/10.3390/polym12020454.
- Sang, Z., Ke, K. and Manas-Zloczower, I. (2019), "Effect of carbon nanotube morphology on properties in thermoplastic elastomer composites for strain sensors", Compos. Part A Appl. Sci. Manuf., 121, 207-212. https://doi.org/10.1016/j.compositesa.2019.03.007.
- Savino, P., Gherlone, M., and Tondolo, F., (2019), "Shape sensing with inverse finite element method for slender structures", Struct. Eng. Mech., 72(2), 217-227. https://doi.org/10.12989/sem.2019.72.2.217
- Shariati, A., Ghabussi, A., Habibi, M., Safarpour, H., Safarpour, M., Tounsi, A. and Safa, M. (2020), "Extremely large oscillation and nonlinear frequency of a multi-scale hybrid disk resting on nonlinear elastic foundation", Thin-Walled Struct., 154, 106840. https://doi.org/10.1016/j.tws.2020.106840.
- Shepherd, R.F., Ilievski, F., Choi, W., Morin, S.A., Stokes, A.A., Mazzeo, A.D., Chen, X., Wang, M. and Whitesides, G.W. (2011), "Multigait soft robot", Proc. Natl. Acad. Sci. U.S.A., 108(51), 20400-20403. https://doi.org/10.1073/pnas.1116564108.
- Shintake, J., Sonar, H., Piskarev, E., Paik, J. and Floreano, D. (2017), "Soft pneumatic gelatin actuator for edible robotics", IEEE/RSJ Int. Conf. Intell. Robot. Syst., 2017, 3-8. http://arxiv.org/abs/1703.01423.
- Steck, D., Qu, J., Kordmahale, S. B., Tscharnuter, D., Muliana, A. and Kameoka, J. (2019), "Mechanical responses of ecoflex silicone rubber: compressible and incompressible behaviors", J. Appl. Polym. Sci., 136(5), 1-11. https://doi.org/10.1002/app.47025.
- Sun, T., Chen, Y., Han, T., Jiao, C., Lian, B. and Song, Y. (2020), "A soft gripper with variable stiffness inspired by pangolin scales, toothed pneumatic actuator and autonomous controller", Robot. Comput. Integr. Manuf., 61. https://doi.org/10.1016/j.rcim.2019.101848.
- Taherkhani, B., Azizkhani, M.B., Kadkhodapour, J., Anaraki, A.P. and Rastgordani, S. (2020), "Highly Sensitive, Piezoresistive, Silicone/Carbon Fiber-Based Auxetic Sensor for Low Strain Values Bahman", Sensors Actuators A. Phys., 111939. https://doi.org/10.1016/j.sna.2020.111939.
- Tounsi, A., Al-Dulaijan, S. U., Al-Osta, M. A., Chikh, A., Al-Zahrani, M. M., Sharif, A. and Tounsi, A. (2020), "A four variable trigonometric integral plate theory for hygro-thermomechanical bending analysis of AFG ceramic-metal plates resting on a two-parameter elastic foundation", Steel Comp. Struct., 34(4), 511. https://doi.org/10.12989/scs.2020.34.4.511
- Trivedi, D., Dienno, D. and Rahn, C. D. (2008), "Optimal, ModelBased Design of Soft Robotic Manipulators", J. Mech. Des. Trans. ASME., 130(9), 0914021-29. https://doi.org/10.1115/1.2943300.
- Wang, L., Chen, Y., Lin, L., Wang, H., Huang, X., Xue, H. and Gao, J. (2019), "Highly Stretchable, Anti-Corrosive and Wearable Strain Sensors Based on the PDMS / CNTs Decorated Elastomer Nano Fiber Composite", Chem. Eng. J., 362, 89-98. https://doi.org/10.1016/j.cej.2019.01.014.
- Wang, Z., Zhang, Q., Yue, Y., Xu, J., Xu, W., Sun, X., Chen, Y., Jiang, J. and Liu, Y. (2019), "3D Printed Graphene/Polydimethylsiloxane Composite for Stretchable Strain Sensor with Tunable Sensitivity", Nanotechnology., 30(34), 345501. https://doi.org/10.1088/1361-6528/ab1287
- Wurdemann, H.A. (2018), "Directly printable flexible strain sensors for bending and contact feedback of soft actuators", Frontiers Robotics AI., 5, 1-14. https://doi.org/10.3389/frobt.2018.00002.
- Xiang, S., Chen, S., Yao, M., Zheng, F. and Lu, Q. (2019), "Strain Sensor Based on a Flexible Polyimide Ionogel for Application in High- and Low-Temperature Environments", J. Mater. Chem. C., 7(31), 9625-9632. https://doi.org/10.1039/c9tc02719j.
- Xu, H., Lv, Y., Qiu, D., Zhou, Y., Zeng, H. and Chu, Y. (2019), "An Ultra-Stretchable, Highly Sensitive and Biocompatible Capacitive Strain Sensor from an Ionic Nanocomposite for onSkin Monitoring", Nanoscale, 11(4), 1570-78. https://doi.org/10.1039/c8nr08589g.
- Yan, X., Bowen, C., Yuan, C., Hao, Z. and Pan, M. (2019), "Carbon fibre based flexible piezoresistive composites to empower inherent sensing capabilities for soft actuators", Soft Matter, 15(40), 8001-8011. https://doi.org/10.1039/c9sm01046g.
- Yao, S. and Zhu, Y. (2014), "Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires", Nanoscale., 6(4), 2345. https://doi.org/10.1039/c3nr05496a.
- Xiao, Y., Jiang, S., Li, Y. and Zhang, W. (2020), "Highly sensitive printed crack-enhanced strain sensor as dual-directional bending detector", Smart Mater. Struct., 29(4), 045023. https://doi.org/10.1088/1361-665X/ab75a2.
- Yashiro, S., Wada, J. and Sakaida, Y. (2017), "A monitoring technique for disbond area in carbon fiber-reinforced polymer bonded joints using embedded fiber bragg grating sensors: Development and experimental validation", Struct. Heal. Monit., 16(2), 185-201. https://doi.org/10.1177/1475921716669979.
- Zarei, M.S., Azizkhani, M.B., Hajmohammad, M.H., and Kolahchi, R. (2017), "Dynamic buckling of polymer-carbon nanotube-fiber multiphase nanocomposite viscoelastic laminated conical shells in hygrothermal environments", J. Sandw. Struct. Mater., 109963621774328. https://doi.org/10.1177/1099636217743288.
- Zhang, L., Kou, H., Tan, Q., Liu, G., Zhang, W. and Xiong, J. (2019), "High-performance strain sensor based on a 3d conductive structure for wearable electronics", J. Phys. D. Appl. Phys., 52(39), 395401. https://doi.org/10.1088/1361-6463/ab2c78
- Zhang, X., Cao, J., Yang, Y., Wu, X., Zheng, Z. and Zhang, X. (2019), "Flame-Retardant, highly sensitive strain sensors enabled by renewable phytic acid-doped biotemplate synthesis and spirally structure design", Chem. Eng. J., 374, 730-737. https://doi.org/10.1016/j.cej.2019.05.211.
- Zhao, J., He, C., Yang, R., Shi, Z., Cheng, M., Yang, W., Xie, G., Wang, D., Shi, D. and Zhang, G. (2012), "Ultra-Sensitive strain sensors based on piezoresistive nanographene films", Appl. Phys. Lett., 101(6), 2010-2015. https://doi.org/10.1063/1.4742331.
- Zhou, H., Zheng, S., Qu, C., Wang, D., Liu, C., Wang, Y., Fan, X., Xiao, W., I, Ho., Zhao, D., Chang, J., Chen, C. and Zhao, X. (2019), "Simple and environmentally friendly approach for preparing high- performance polyimide precursor hydrogel with fully aromatic structures for strain sensor", Eur. Polym. J., 114, 346-52. https://doi.org/10.1016/j.eurpolymj.2019.01.043.
- Zhu, Li, Zhou, X., Liu, Y. and Fu, Q. (2019), "Highly sensitive, ultrastretchable strain sensors prepared by pumping hybrid fillers of carbon nanotubes/cellulose nanocrystal into electrospun polyurethane membranes", ACS Appl. Mater. Interfaces., 11(13), 12968-12977. https://doi.org/10.1021/acsami.9b00136.