참고문헌
- Abdalla, H.M. and Karihaloo, B.L. (2003), "Determination of size - independent specific fracture energy of concrete from three - point bend and wedge splitting tests", Mag. Concrete. Res., 55,133-141.https://doi.org/10.1680/macr.2003.55.2.133.
- Abdalla, H.M. and Karihaloo, B.L. (2004), "A method for constructing the bilinear tension softening diagram of concrete corresponding to its true fracture energy", Mag. Concrete. Res., 56, 597-604. https://doi.org/10.1680/macr.56.10.597.53679.
- Al-Osta, M.A. (2019), "Shear behaviour of RC beams retrofitted using UHPFRC panels epoxied to the sides", Comput. Concrete, 24, 37-49, https://doi.org/10.12989/cac.2019.24.1.037.
- Anoushehei, M., Daneshjoo, F., Mahboubi, S. and Khazaeli, S. (2017), "Experimental investigation on hysteretic behavior of rotational friction dampers with new friction materials", Steel Comp. Struct., 24(2), 239-248. https://doi.org/10.12989/scs.2017.24.2.239.
- Aydin, S., Yazici, H., Yardimci, M.Y. and Yi Giter, H. (2010), "Effect of aggregate type on mechanical properties of reactive powder concrete", ACI Materials J., 107, 441-449.
- Bazant, Z.P. (1996), "Analysis of work -of- fracture method for measuring fracture energy of concrete", ASCE J. Eng. Mech., 122, 138-144. https://doi.org/10.1061/(ASCE)0733-99(1996)122:2(138).
- Bazant, Z.P. and Kazemi, M.T. (1991), "Size dependence ofconcrete fracture energy determined by RILEM work-offracture method", J. Fracture, 51, 121-138. https://doi.org/10.1007/BF00033974
- Carpinteri, A. and Chiaia, B. (1996), "Size effects on concrete fracture energy: dimensional transition from order to disorder", Mater. Struct., 29, 259-266. https://doi.org/10.1007/BF02486360.
- Chalioris, C. E., Kosmidou, P. M. K. and Karayannis, C. G., (2019), "Cyclic Response of Steel Fiber Reinforced Concrete Slender Beams; An experimental study", Materials 12(9), 1398, https://doi.org/10.3390/ma12091398.
- Chalioris, C.E (2013), "Analytical approach for the evaluation of minimum fibre factor required for steel fibrous concrete beams under combined shear and flexure", Construct. Build. Mater., 43(June), 2013, 317-336, https://doi.org/10.1016/j.conbuildmat.2013.02.039
- Chalioris, C.E. and Panagiotopoulos, T.A. (2018), "Flexural analysis of steel fibre-reinforced concrete members", Comput. Concrete, 22(1), 11-25. https://doi.org/http://dx.doi.org/10.12989/cac.2018.22.1.011.
- Chalioris, C.E. and Sfiri, E.F. (2011), "Shear performance of steel fibrous concrete beams", Procedia Eng., 14(2011) 2064-2068, https://doi.org/10.1016/j.proeng.2011.07.259.
- Chen, B. and Liu, J. (2004), "Experimental study on AE characteristics of three point bending concrete beams", Cement Concrete Res., 34, 391-397. https://doi.org/10.1016/j.cemconres.2003.08.021.
- Cifuentes, H., Alcalde, M., Medina, F. (2012), "Measuring the size independent fracture energy of concrete", Strain, 49, 54-59. https://doi.org/10.1111/str.12012.
- Colombo, S., Main, I.G. and Forde, M.C. (2003), "Assessing damage of reinforced concrete beam using 'b-value' analysis of acoustic emission signals", ASCE J. Mater. Civil Eng., 15, 280-286. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:3(280).
- Corinaldesi, V. and Moriconi, G. (2012), "Mechanical and thermal evaluation of Ultra-High Performance Fiber Reinforced Concretes for engineering applications", Construct. Build. Mater., 26, 289-294. https://doi.org/10.1016/j.conbuildmat.2011.06.023.
- Cwirzen, A., Penttala, V. and Vornanen, C. (2008), "Reactive powder based concretes: Mechanical properties, durability and hybrid use with OPC", Cement Concrete Res., 38, 1217-1226. https://doi.org/10.1016/j.cemconres.2008.03.013.
- Dai, Q., Ng, K., Zhou, J., Kreiger, E.L. and Ahlborn, T.M. (2012), "Theresa M. Ahlborn. Damage investigation of single-edge notched beam tests with normal strength concrete and ultra high performance concrete specimens using acoustic emission techniques", Construct. Build. Mater., 31, 231-242, https://doi.org/10.1016/j.conbuildmat.2011.12.080.
- Elices, M., Guinea, G.V. and Planas, J. (1992), "Measurement of the fracture energy using three-point bend tests: Part 3-Influence of cutting the P - δ tail", Mater. Struct., 25, 137-163. https://doi.org/10.1007/BF02472591.
- Gonzalez, D. C., Vicente, M. A. and Ahmad, S. (2015), "Effect of Cyclic Loading on the Residual Tensile Strength of Steel Fiber-Reinforced High-Strength Concrete", J. Mater. Civ. Eng., 27(9), https://doi.org/10.1061/(ASCE)MT.1943-5533.0001200.
- Gopalaratnam, V.S. and Shah, S.P. (1985), "Softening response of plain concrete in direct tension", ACI J., 82, 310-323.
- Guinea, G.V., Planas, J. and Elices, M. (1992), "Measurement of the fracture energy using three-point bend tests: Part 1-Influence of experimental procedures", Mater. Struct., 25, 212-218. https://doi.org/10.1007/BF02473065.
- Habel, K., Viviani, M., Denarie, E. and Bruhwiler, E. (2006), "Development of the mechanical properties of an Ultra-High Performance Fiber Reinforced Concrete (UHPFRC)", Cement Concrete Res., 36, 1362-1370. https://doi.org/10.1016/j.cemconres.2006.03.009.
- Hassan, A.M.T., Jones, S.W. and Mahmud, G.H., (2012), "Experimental test methods to determine the uniaxial tensile and compressive behaviour of ultra-high performance fibre reinforced concrete (UHPFRC)", Construct. Build. Mater., 37, 874-882. https://doi.org/10.1016/j.conbuildmat.2012.04.030.
- Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6, 773-782. https://doi.org/10.1016/0008-8846(76)90007-7.
- Hu, X. and Wittmann, F. (1992), "Fracture energy and fracture process zone", Mater. Struct., 25, 319-326. https://doi.org/10.1007/BF02472590.
- Hu, X. and Wittmann, F. (2000), "Size effect on toughness induced by crack close to free surface", Eng. Fracture Mech., 65, 209-221. https://doi.org/10.1016/S0013-7944(99)00123-X
- Kang, S.T. and Kim, J.K. (2011), "The relation between fiber orientation and tensile behavior in an ultra high performance fiber reinforced cementitious composites (UHPFRCC)", Cement Concrete Res., 41, 1001-1014. https://doi.org/10.1016/j.cemconres.2011.05.009
- Karihaloo, B.L, Abdalla, H.M. and Imjai, T. (2003), "A simple method for determining the true specific fracture energy of concrete", Mag. Concrete Res., 55, 471-481. https://doi.org/10.1680/macr.55.5.471.37590.
- Karihaloo, B.L. (1995), Fracture Mechanics and Structural Concrete, Longman, Addison Wesley, United Kingdom.
- Kitsutaka, Y. (1997), "Fracture parameters by polylinear tensions-oftening analysis", J. Eng. Mech. ASCE, 123, 444-450. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000418.
- Kwon, S., Zhao, Z. and Shah, S.P. (2008), "Effect of specimen size on fracture energy and softening curve of concrete: Part II. Inverse analysis and softening curve", Cement Concrete Res., 38, 1061-1069. https://doi.org/10.1016/j.cemconres.2008.03.014.
- Kytinou, V.K., Chalioris, C.E. and Karayannis, C.G. (2020), "Analysis of residual flexural stiffness of steel fiber-reinforced concrete beams with steel reinforcement", Materials, 13(12), 2698. https://doi.org/10.3390/ma13122698.
- Kytinou, V.K., Chalioris, C.E., Karayannis, C.G. and Elenas, A. (2020), "Effect of steel fibers on the hysteretic performance of concrete beams with steel reinforcement-tests and analysis", Materials, 13(13), 2923. https://doi.org/10.3390/ma13132923.
- Landis, E.N. (1999), "Micro-macro fracture relationships and acoustic emissions in concrete", Construct. Build. Mater., 13, 65-72. https://doi.org/10.1016/S0950-0618(99)00009-4.
- Leila Meraji, Hasan Afshin, KarimAbedi, (2019), "Flexural behavior of RC beams retrofitted by ultra-high performance fiber-reinforced concrete", Comput. Concrete, 24, 159-172. https://doi.org/10.12989/cac.2019.24.2.159.
- Li, V.C., Chan, C.M. and Leung, C.K.Y. (1987), "Experimental determination of the tension-softening relations for cementitious composites", Cement Concrete Res., 17, 441-452. http://hdl.handle.net/2027.42/84710. https://doi.org/10.1016/0008-8846(87)90008-1
- Lim, M.K. and Koo, T.K. (1989), "Acoustic emission from reinforced concrete beams", Mag. Concrete Res., 41, 229-234. https://doi.org/10.1680/macr.1989.41.149.229.
- Ma, J., Orgass, M., Dehn, F., Schmidt, D. and Tue, N.V. (2004), "Comparative investigations on ultra-high performance concrete with and without coarse aggregates", Proceedings of the International Symposium on UHPC, Kassel, Germany, September. 205-212.
- Meskenas, A., Kaklauskas, G., Daniunas, A., Bacinskas, D., Jakubovskis, R., Gribniak, S. and Gelazius, V. (2014), "Determination of the Stress-Crack Opening Relationship of SFRC by an Inverse Analysis", Mech. Compos. Mater., 49, 685-690. https://doi.org/10.1007/s11029-013-9385-8.
- Mihashi, H., Nomura, N. and Niiseki, S. (1991), "Influence of aggregate size on fracture process zone of concrete detected with three dimensional acoustic emission technique", Cement Concrete Res., 21,737-744. https://doi.org/10.1016/0008-8846(91)90168-H
- Mindess, S. (1984), "The effect of specimen size on the fracture energy of concrete", Cement and. Concrete Res., 14, 431-436. https://doi.org/10.1016/0008-8846(84)90062-0.
- Monteiro Azevedo, N. and Lemos, J.V. (2006), "Aggregate shape influence on the fracture behaviour of concrete", Struct. Eng. Mech., 24, 411-427. https://doi.org/10.12989/sem.2006.24.4.411.
- Muralidhara, S, Raghu Prasad, B.K, Karihaloo, B.L, Singh, R.K, (2011), "Size independent fracture energy in plain concrete beams using tri-linear model", Construct. Build. Mater., 25, 3051-3058. https://doi.org/10.1016/j.conbuildmat.2011.01.003.
- Muralidhara,S, Raghu Prasad, B.K, Eskandari, H, Karihaloo, B.L, (2010), "Fracture process zone size and true fracture energy of plain concrete from acoustic emission catalogue ", Construct. Build. Mater., 24, 479-486. https://doi.org/10.1016/j.conbuildmat.2009.10.014.
- Murthy, A.R. (2011), "Fatigue and fracture behaviour of ultra high strength concrete beams", Ph.D. Dissertation, Indian Institute of Science, Bangalore, India.
- Murthy, A.R., Iyer, N.R. and Prasad, B.R. (2013a), "Evaluation of mechanical properties for high strength and ultrahigh strength concretes", Adv. Concrete Construct. 1(4), 341-358, https://doi.org/10.12989/acc2013.1.4.341.
- Murthy, A.R., Karihaloo, B.L., Iyer, N.R. and Prasad, B.R. (2013b), "Bilinear tension softening diagrams of concrete mixes corresponding to their size-independent specific fracture energy", Construct. Build. Mater., 47,1160-1166, https://doi.org/10.1016/j.conbuildmat.2013.06.004
- Nallathambi, P., Karihaloo, B.L. and Heaton, B.S. (1985), "Various size effects in fracture of concrete", Cement Concrete Res., 15, 117-126. https://doi.org/10.1016/0008-8846(85)90016-X.
- Nanakorn, P. and Horii, H. (1996), "Back analysis of tension softening relationship of concrete", J. Mater. Concrete, Struct. Pavements JSCE, 32, 265-275.
- Neville, A.M. (1995), Properties of Concrete, 4th edition, Longman Scientific, London, United Kingdom.
- Olesen, J.F. (2001), "Fictitious crack propagation in fiber-reinforced concrete beams", J. Eng. Mech. ASCE, 127, 272-280. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:3(272).
- Ostergaard, L. (2003), "Early-age Fracture Mechanics and Cracking of Concrete", Ph.D. Dissertation, The Technical University of Denmark, Lyngby, Denmark.
- Ostergaard, L. (2003), Early-age Fracture Mechanics and Cracking of Concrete, Technical University of Denmark, Lyngby, Denmark.
- Pan. Z. (2011), "Fracture properties of geopolymer paste and concrete", Mag. Concrete Res., 63, 763-771, https://doi.org/10.1680/macr.2011.63.10.763.
- Planas, J., Elices, M. and Guinea, G.V. (1992), "Measurement of the fracture energy using three-point bend tests: Part 2-Influence of bulk energy dissipation", Mater. Struct., 25, 305-312. https://doi.org/10.1007/BF02472671.
- Pyo, S., Kim, H.K. and Lee, B.Y. (2017), "Effects of coarser fine aggregate on tensile properties of ultra high performance concrete", Cement Concrete Compos., 84, 28-35. https://doi.org/10.1016/j.cemconcomp.2017.08.014.
- Raghu Prasad, B.K. And Vidya Sagar, R. (2008), "Relationship between AE Energy and Fracture Energy of Plain Concrete Beams: Experimental Study", ASCE J. Mater. Civil Eng., 20, 212-220. https://doi.org/10.1061/(ASCE)0899-561(2008)20:3(212).
- Ramachandra Murthy, A., Ganesh, P., Sundar Kumar. S. and Iyer, N.R., "Fracture energy and tension softening relation for nano modified concrete", Struct. Eng. Mech., 54, 1201-1216, https://doi.org/10.12989/sem.2015.54.6.1201
- Ramachandra Murthy, A., Karihaloo, B.L., Iyer, N.R. and Raghu Prasad, B.K. (2013), "Determination of size-independent specific fracture energy of concrete mixes by two methods", Cement Concrete Res., 50, 19-25. https://doi.org/10.1016/j.cemconres.2013.03.015.
- Ramachandra Murthy. A, (2011), "Fatigue and fracture behaviour of ultra high strength concrete beams, PhD thesis, Indian Institute of Science, Bangalore, India.
- Richard, P, Cheyrezy, M, (1995), "Composition of reactive powder concretes", Cement Concrete Res., 25 ,1501-1511. https://doi.org/10.1016/0008-8846(95)00144-2
- RILEM TCM (1985), "Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams", Mater. Struct., 18, 287-290. https://doi.org/10.1007/BF02472918.
- Roelfstra, P.E. and Wittmann, F.H. (1986), "Numerical method to link strain softening with failure of concrete", Fracture Toughness and Fracture Energy of Concrete, Elsevier Science, New York. 163-175.
- Sagar, R.V. and Prasad, B.R. (2012), "A Review of recent development in parametric based acoustic emission techniques applied to concrete structures", Nodestructive Test Evaluation, 27, 47-68. https://doi.org/10.1080/10589759.2011.589029.
- Sahin, Y. and Koksal, F. (2011), "The influences of matrix and steel fibre tensile strengths on the fracture energy of high strength concrete", Construct. Build. Mater., 25, 1801-1806. https://doi.org/10.1016/j.conbuildmat.2010.11.084.
- Stang, H. and Olesen, J.F. (1998), On the interpretation ofbending tests on FRC-materials. Proc FRAMCOS-3, Fracture Mechanics of Concrete Structures, Aedificatio Publishers, Freiburg, Germany. 511-520.
- Tada, H., Paris, P.C. and Irwin G.R. (1985), The Stress Analysis of Cracks Handbook, 2nd edition, Paris Productions.
- Ulfkjaer, J.P., Krenk, S. and Brincker, R. (1995), "Analytical model for fictitious crack propagation in concrete beams", J. Eng. Mech. ASCE, 7-15. https://doi.org/10.1061/(ASCE)0733-399(1995)121:1(7).
- Vydra, V., Trtik, K. and Vodak, F. (2012), "Size independent fracture energy of concrete", Construct. Build. Mater., 26, 357-361. https://doi.org/10.1016/j.conbuildmat.2011.06.034
- Wang, Y.J., Li, V.C. and Backer, S. (1990), "Experimental determination of tensile behaviour of fibre reinforced concrete", ACI Mater. J., 87, 461-468.
- Wille, K. and Boisvert-Cotulio, C. (2015), "Material efficiency in the design of ultra-high performance concrete", Construct. Build. Mater., 86, 33-43. https://doi.org/10.1016/j.conbuildmat.2015.03.087
- Yang, S. L., Millard, S. G., Soutsos, M. N., Barnett, S. J. and Le, T. T. (2009), "Influence of aggregate and curing regime on the mechanical properties of ultra-high performance fibre reinforced concrete (UHPFRC)", Construct. Build. Mater., 23, 2291-2298. https://doi.org/10.1016/j.conbuildmat.2008.11.012.
- Yoo, D. Y., Kang, S. T., Lee, J. H. and Yoon, Y. S. (2013), "Effect of shrinkage reducing admixture on tensileand flexural behaviors of UHPFRC considering fiber distribution characteristics", Cement Concrete Res., 54, 180-190. https://doi.org/10.1016/j.cemconres.2013.09.006.
- Yoo, D.Y., Kang, S.T. and Yoon, Y.S. (2014), "Effect of fiber length and placement method on flexural behavior, tension-softening curve, and fiber distribution characteristics of UHPFRC", Construct. Build. Mater., 64, 67-81. https://doi.org/10.1016/j.conbuildmat.2014.08.039.
- Youyuan, L. and Zongjin, L. (2012), "Studyofthe relationship between concrete fracture energy and ae signal energy under uniaxial compression", ASCE J. Mater. Civil Eng., 24,538-547. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000418
- Yu, R., Song, Q., Wang, X., Zhang, Z., Shui, Z. and Brouwers, H.J.H. (2017), "Sustainable development of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC): Towards to an optimized concrete matrix and efficient fibre application", J. Cleaner Production, 162, 220-233, https://doi.org/10.1016/j.jclepro.2017.06.017.
- Yu, R., Spiesz, P. and Brouwers, H.J.H. (2014), "Mix design and properties assessment of ultra-high performance fibre reinforced concrete (UHPFRC)", Cement Concrete Res., 56, 29-39. https://doi.org/10.1016/j.cemconres.2013.11.002.
- Zhang, J., Leung, C. K. and Xu, S. (2010), "Evaluation of fracture parameters of concrete from ending test using inverse analysis approach", Mater. Struct., 43, 857-874. https://doi.org/10.1617/s11527-009-9552-5.
- Zhang, P., Gao, J.X., Dai, X.B., Zhang, T.H. and Wang, J. (2016), "Fracture behavior of fly ash concrete containing silica fume", Struct. Eng. Mech., 59, 261-275. https://doi.org/https://doi.org/10.12989/sem.2016.59.2.261.
- Zhao, Z., Kwon, S. and Shah, S.P. (2008), "Effect of specimen size on fracture energy and softening curve of concrete: Part I. Experiments and fracture energy", Cement Concrete Res., 38, 1049-1060. https://doi.org/10.1016/j.cemconres.2008.03.017.