Acknowledgement
This research is funded by National University of Civil Engineering (NUCE) under grant number 11-2020/KHXD-TĐ. The authors acknowledge the financial support of VLIRUOS TEAM Project, VN2018TEA479A103, 'Damage assessment tools for Structural Health Monitoring of Vietnamese infrastructures', funded by the Flemish Government.
References
- Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M. and Inman, D. J. (2017), "Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks", J. Sound Vib., 388, 154-170. https://doi.org/10.1016/j.jsv.2016.10.043.
- Ahmad, S., Waleed, A., Virk, U. S., Riaz, M. T., Sharjeel, A. and Ahmad, N. (2019), "Multiple damage detections in plate-like structures using curvature mode shapes and gapped smoothing method", Adv. Mech. Eng., 11(5), 1687814019848921. https://doi.org/10.1177/1687814019848921.
- Alvandi, A. and Cremona, C. (2006), "Assessment of vibration-based damage identification techniques", J. Sound Vib., 292(1-2), 179-202. https://doi.org/10.1016/j.jsv.2005.07.036.
- Anitescu, C., Atroshchenko, E., Alajlan, N. and Rabczuk, T. (2019), "Artificial neural network methods for the solution of second order boundary value problems", Computers, Mater. Continua, 59(1), 345-359. https://doi.org/10.32604/cmc.2019.06641.
- Brincker, R., Zhang, L. and Andersen, P. (2001), "Modal identification of output-only systems using frequency domain decomposition", Smart Mater. Struct., 10(3), 441. https://doi.org/10.1088/0964-1726/10/3/303.
- Carden, E. P. and Fanning, P. (2004), "Vibration based condition monitoring: a review", Struct. Health Monitor., 3(4), 355-377. https://doi.org/10.1177/1475921704047500.
- Cha, Y. J., Choi, W. and Buyukozturk, O. (2017), "Deep learning‐based crack damage detection using convolutional neural networks", Computer Aided Civil infrastruct. Eng., 32(5), 361-378. https://doi.org/10.1111/mice.12263.
- Ciambella, J. and Vestroni, F. (2015), "The use of modal curvatures for damage localization in beam-type structures", J. Sound Vib., 340, 126-137. https://doi.org/10.1016/j.jsv.2014.11.037.
- Cofre-Martel, S., Kobrich, P., Lopez Droguett, E. and Meruane, V. (2019), "Deep convolutional neural network-based structural damage localization and quantification using transmissibility data", Shock Vib., 2019. https://doi.org/10.1155/2019/9859281.
- De Roeck, G., Reynders, E. and Anastasopoulos, D. (2017), "Assessment of Small Damage by Direct Modal Strain Measurements", International Conference on Experimental Vibration Analysis for Civil Engineering Structures, 3-16. Springer. https://doi.org/10.1007/978-3-319-67443-8_1.
- Dutta, A. and Talukdar, S. (2004), "Damage detection in bridges using accurate modal parameters", Finite Elements in Analysis Design, 40(3), 287-304. https://doi.org/10.1016/S0168-874X(02)00227-5.
- Ewins, D. (2000), "Model validation: Correlation for updating", Sadhana, 25(3), 221-234. https://doi.org/10.1007/BF02703541.
- Khodabandehlou, H., Pekcan, G. and Fadali, M. S. (2019), "Vibration-based structural condition assessment using convolution neural networks", Struct. Control Health Monitor., 26(2), e2308. https://doi.org/10.1002/stc.2308.
- Meruane, V., Fernandez, I., Ruiz, R. O., Petrone, G. and Lopez‐Droguett, E. (2019), "Gapped Gaussian smoothing technique for debonding assessment with automatic thresholding", Struct. Control Health Monitor., 26(8) e2371. https://doi.org/10.1002/stc.2371.
- Na, S. and Lee, H.K. (2013), "Neural network approach for damaged area location prediction of a composite plate using electromechanical impedance technique", Compos. Sci. Technol., 88, 62-68. https://doi.org/10.1016/j.compscitech.2013.08.019.
- Nanthakumar, S., Lahmer, T., Zhuang, X., Zi, G. and Rabczuk, T. (2016), "Detection of material interfaces using a regularized level set method in piezoelectric structures", Inverse Problems Sci. Eng., 24(1), 153-76. https://doi.org/10.1080/17415977.2015.1017485.
- Nguyen, D. H., Bui, T. T., De Roeck, G. and Wahab, M. A. (2019), "Damage detection in Ca-Non Bridge using transmissibility and artificial neural networks", Struct. Eng. Mech., 71, 175-183. http://dx.doi.org/10.12989/sem.2019.71.2.175.
- Nguyen, H. D., Bui, T. T., De Roeck, G. and Wahab, M. A. (2018), "Damage Detection in Simply Supported Beam Using Transmissibility and Auto-Associative Neutral Network", International Conference on Numerical Modelling in Engineering, 177-186. Springer. https://doi.org/10.1007/978-981-13-2405-5_15.
- Pandey, A., Biswas, M. and Samman, M. (1991), "Damage detection from changes in curvature mode shapes", J. Sound Vib., 145(2), 321-332. https://doi.org/10.1016/0022-460X(91)90595-B.
- Ratcliffe, C.P. (1997), "Damage detection using a modified Laplacian operator on mode shape data", J. Sound Vib., 204(3), 505-17. https://doi.org/10.1006/jsvi.1997.0961.
- Ratcliffe, C.P. and Bagaria, W. J. (1998), "Vibration technique for locating delamination in a composite beam", AIAA J., 36(6), 1074-1077. https://doi.org/10.2514/2.482.
- Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V. M., Guo, H., Hamdia, K., Zhuang, X. and Rabczuk, T. (2020), "An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications", Comput. Methods Appl. Mech. Eng., 362, 112790. https://doi.org/10.1016/j.cma.2019.112790.
- Sarkar, S., Reddy, K. K., Giering, M. and Gurvich, M. R. (2016), "Deep learning for structural health monitoring: A damage characterization application", Annual Conference of the Prognostics and Health Management Society, 176-182.
- Shu, J., Zhang, Z., Gonzalez, I. and Karoumi, R. (2013), "The application of a damage detection method using Artificial Neural Network and train-induced vibrations on a simplified railway bridge model", Eng. Struct., 52, 408-421. https://doi.org/10.1016/j.engstruct.2013.02.031.
- Tran-Ngoc, H., Khatir, S., De Roeck, G., Bui-Tien, T. and Wahab, M. A. (2019), "An efficient artificial neural network for damage detection in bridges and beam-like structures by improving training parameters using cuckoo search algorithm", Eng. Struct., 199, 109637. https://doi.org/10.1016/j.engstruct.2019.109637.
- Verstraete, D., Ferrada, A., Droguett, E. L., Meruane, V. and Modarres, M. (2017), "Deep learning enabled fault diagnosis using time-frequency image analysis of rolling element bearings", Shock Vib., 2017. https://doi.org/10.1155/2017/5067651.
- Wahab, M. A. and De Roeck, G. (1999), "Damage detection in bridges using modal curvatures: application to a real damage scenario", J. Sound Vib., 226(2), 217-235. https://doi.org/10.1006/jsvi.1999.2295.
- Worden, K. and Manson, G. (2006), "The application of machine learning to structural health monitoring", Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1851), 515-537. https://doi.org/10.1098/rsta.2006.1938.
- Yan, Y., Cheng, L., Wu, Z. and Yam, L. (2007), "Development in vibration-based structural damage detection technique", Mech. Syst. Signal Process., 21(5), 2198-2211. https://doi.org/10.1016/j.ymssp.2006.10.002.
- Yang, Z.-B., Radzienski, M., Kudela, P. and Ostachowicz, W. (2016), "Two-dimensional modal curvature estimation via Fourier spectral method for damage detection", Compos. Struct., 148, 155-167. https://doi.org/10.1016/j.compstruct.2016.04.001.
- Yoon, M., Heider, D., Gillespie Jr, J., Ratcliffe, C. and Crane, R. (2005), "Local damage detection using the two-dimensional gapped smoothing method", J. Sound Vib., 279(1-2), 119-139. https://doi.org/10.1016/j.jsv.2003.10.058
- Yu, Y., Wang, C., Gu, X. and Li, J. (2019), "A novel deep learning-based method for damage identification of smart building structures", Struct. Health Monitor., 18(1), 143-163. https://doi.org/10.1177/1475921718804132.
- Zapico, J., Gonzalez, M. and Worden, K. (2003), "Damage assessment using neural networks", Mech. Syst. Signal Processing, 17(1), 119-25. https://doi.org/10.1006/mssp.2002.1547
- Zhao, Z.-Q., Zheng, P., Xu, S.-t. and Wu, X. (2019), "Object detection with deep learning: A review", IEEE Transactions Neural Networks Learning Syst., 30(11), 3212-3232. https://doi.org/10.1109/TNNLS.2018.2876865.