Acknowledgement
Experiments were supported by funding from the National Applied Research Laboratories Project of Taiwan (NCREE-06107A1700). M.B. gratefully acknowledges the funding provided by the Ministry of Science and Technology of Taiwan (MOST 106-2811-E-492-001). N.T. acknowledges the financial support of the "Research Program FAR 2020" provided by the University of Ferrara. A special thank is extended to our technicians of NCREE, and to the students of National Chiao Tung University who furnished assistance to the authors.
References
- ACI 318 (2019), Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute; Farmington Hills, MI, USA.
- Annual Book of ASTM Standards (2016), Section 4: Construction vol. 04.02. Concrete and Aggregates, American Society for Testing & Materials.
- Bazant, Z.P. and Cedolin, L. (1991), Stability of Structures, Oxford University Press, New York, USA.
- Bazant, Z.P., Jirasek, M., Hubler, M.H. and Carol, I. (2015), "RILEM draft recommendation: TC-242-MDC multi-decade creep and shrinkage of concrete: material model and structural analysis. Model B4 for creep, drying shrinkage and autogenous shrinkage of normal and high-strength concretes with multi-decade applicability", Mater. Struct., 48(4), 753-770. http://dx.doi.org/10.1617/s11527-014-0485-2.
- Bonopera, M., Chang, K.C., Chen, C.C., Lin, T.K. and Tullini, N. (2018a), "Compressive column load identification in steel space frames using second-order deflection-based methods", Int. J. Struct. Stab. Dy., 18(7), 1-16, 1850092. https://doi.org/10.1142/S021945541850092X.
- Bonopera, M., Chang, K.C., Chen, C.C., Lee, Z.K. and Tullini, N. (2018b), "Axial load detection in compressed steel beams using FBG-DSM sensors", Smart Struct. Syst., 21(1), 53-64. https://doi.org/10.12989/sss.2018.21.1.053
- Bonopera, M., Chang, K.C., Chen, C.C., Sung, Y.C. and Tullini, N. (2018c), "Feasibility study of prestress force prediction for concrete beams using second-order deflections", Int. J. Struct. Stab. Dy., 18(10), 1-19, 1850124. https://doi.org/10.1142/S0219455418501249
- Bonopera, M., Chang, K.C., Chen, C.C., Sung, Y.C. and Tullini, N. (2018d), "Prestress force effect on fundamental frequency and deflection shape of PCI beams", Struct. Eng. Mech., 67(3), 255-265. https://doi.org/10.12989/sem.2018.67.3.255
- Bonopera, M., Chang, K.C., Chen, C.C., Lin, T.K. and Tullini, N. (2018e), "Bending tests for the structural safety assessment of space truss members", Int. J. Space Struct., 33(3-4), 138-149. https://doi.org/10.1177/266351118804123.
- Bonopera, M., Chang, K.C., Chen, C.C., Sung, Y.C. and Tullini, N. (2019a), "Experimental study on the fundamental frequency of prestressed concrete bridge beams with parabolic unbonded tendons", J. Sound Vib., 455, 150-160. https://doi.org/10.1016/j.jsv.2019.04.038.
- Bonopera, M., Chang, K.C., Chen, C.C., Lee, Z.K., Sung, Y.C. and Tullini, N. (2019b), "Fiber Bragg grating-differential settlement measurement system for bridge displacement monitoring: Case study", J. Bridge Eng., 24(10), 1-12, 05019011. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001470.
- Breccolotti, M. (2018), "On the evaluation of prestress loss in PRC beams by means of dynamic techniques", Int. J. Concr. Struct. Mater., 12(1). https://doi.org/10.1186/s40069-018-0237-8.
- BS EN 12812 (2008), Falsework - Performance Requirements and General Design, British Standards Institution.
- CEB (1993), CEB-FIP Model Code 1990, CEB Bulletin d'Information No. 213/214, Comite Euro-International du Beton, Lausanne, Switzerland, 33-41.
- Chin, W.Y. and Chern, J.C. (2018), "Establishment of B4-TW prediction model for concrete deformation in Taiwan (II): drying shrinkage, autogenous shrinkage and total shrinkage", Struct. Eng., 33(3), 65-86 (in Chinese).
- Deak, G. (1996), "Discussion on prestress force effect on vibration frequency of concrete bridges", J. Struct. Eng., 458-459.
- Gan, B.Z., Chiew, S.P., Lu, Y. and Fung, T.C. (2019), "The effect of prestressing force on natural frequencies of concrete beams - A numerical validation of existing experiments by modelling shrinkage crack closure", J. Sound Vib., 455, 20-31. https://doi.org/10.1016/j.jsv.2019.04.030.
- Hamed, E. and Frostig, Y. (2006), "Natural frequencies of bonded and unbonded pre-stressed beams pre-stress force effects", J. Sound Vib., 295(1-2), 28-39. https://doi.org/10.1016/j.jsv.2005.11.032.
- Haque, M.N. and Kayali, O. (1998), "Properties of high-strength concrete using a fine fly ash", Cem. Concr. Res., 28(10), 1445-1452. https://doi.org/10.1016/S0008-8846(98)00125-2.
- Hop, T. (1991), "The effect of degree of prestressing and age of concrete beams on frequency and damping of their free vibration", Mater. Struct., 24, 210-220. https://doi.org/10.1007/BF02472987
- Hsiao, J.K. (2017), "Prestress loss distributions along simply supported pretensioned concrete beams", Electron. J. Struct. Eng., 16, 18-25. https://doi.org/10.56748/ejse.16207
- Jain, S.K. and Goel, S.C. (1996), "Discussion on prestress force effect on vibration frequency of concrete bridges", J. Struct. Eng., 459-460. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:4(458).
- Jaiswal, O.R. (2008), "Effect of prestressing on the first flexural natural frequency of beams", Struct. Eng. Mech., 28(5), 515-524. https://doi.org/10.12989/sem.2008.28.5.515.
- Jerath, S. and Shibani, M.M. (1984), "Dynamic modulus for reinforced concrete beams", J. Struct. Eng., 110(6), 1405-1410. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:6(1405)
- Kato, M. and Shimada, S. (1986), "Vibration of PC bridges during failure process", J. Struct. Div., 112(7), 1692-1703. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:7(1692)
- Kernicky, T., Whelan, M. and Al-Shaer, E. (2018), "Dynamic identification of axial force and boundary restraints in tie rods and cables with uncertainty quantification using Set Inversion Via Interval Analysis", J. Sound Vib., 423, 401-420. https://doi.org/10.1016/j.jsv.2018.02.062
- Kim, J.T., Yun, C.B., Ryu, Y.S. and Cho, H.M. (2004), "Identification of prestress-loss in PSC beams using modal information", Struct. Eng. Mech., 17(3-4), 467-482. https://doi.org/10.12989/sem.2004.17.3_4.467
- Law, S.S. and Lu, Z.R. (2005), "Time domain responses of a pre-stressed beam and pre-stress identification", J. Sound Vib., 288(4-5), 1011-1025. https://doi.org/10.1016/j.jsv.2005.01.045.
- Limongelli, M.P., Siegert, D., Merliot, E., Waeytens, J., Bourquin, F., Vidal, R., Le Corvec, V., Gueguen, I. and Cottineau, L.M. (2016), "Damage detection in a post tensioned concrete beam - Experimental investigation", Eng. Struct., 128, 15-25. https://doi.org/10.1016/j.engstruct.2016.09.017.
- Liu, T.K. and Chern, J.C. (2018), "Establishment of B4-TW prediction model for concrete deformation in Taiwan (I): basic creep, drying creep and total creep", Struct. Eng., 33(3), 43-64 (in Chinese).
- Lu, Z.R. and Law, S.S. (2006), "Identification of pre-stress force from measured structural responses", Mech. Syst. Signal Process., 20(8), 2186-2199. https://doi.org/10.1016/j.ymssp.2005.09.001.
- MATLAB (2019), MATLAB documentation, Introduction to GUIDE, The Mathworks, Inc., 2019a, http://www.mathworks.com/help/matlab/creating_guis/introduction-to-guide.html.
- Mehta, P.K. and Monteiro, P.J.M. (2006), Concrete: Microstructure, Properties, and Materials, 3rd Edition, McGraw-Hill, New York, USA.
- Miyamoto, A., Tei, K., Nakamura, H. and Bull, J.W. (2000), "Behavior of pre-stressed beam strengthened with external tendons", J. Struct. Eng., 126(9), 1033-1044. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:9(1033).
- Muller, H.S. and Hilsdorf, H.K. (1990), General Task Group 9, CEB Comite Euro-International du Beton, Paris, France, 201.
- Noble, D., Nogal, M., O'Connor, A. and Pakrashi, V. (2015), "Dynamic impact testing on post-tensioned steel rectangular hollow sections; An investigation into the 'compression-softening' effect", J. Sound Vib., 355, 246-263. https://doi.org/10.1016/j.jsv.2015.06.021
- Noble, D., Nogal, M., O'Connor, A. and Pakrashi, V. (2016), "The effect of prestress force magnitude and eccentricity on the natural bending frequencies of uncracked prestressed concrete beams", J. Sound Vib., 365, 22-44. https://doi.org/10.1016/j.jsv.2015.11.047.
- Ortega, N.F., Moro, J.M. and Meneses, R.S. (2018), "Theoretical model to determine bond loss in prestressed concrete with reinforcement corrosion", Struct. Eng. Mech., 65(1), 1-7. https://doi.org/10.12989/sem.2018.65.1.001.
- Palanisamy, S.P., Maheswaran, G., Annaamalai, M.G.L. and Vennila, P. (2015), "Steel slag to improve the high strength of concrete", Int. J. Chemtech Res., 7(5), 2499-2505.
- Rebecchi, G., Tullini, N. and Laudiero, F. (2013), "Estimate of the axial force in slender beams with unknown boundary conditions using one flexural mode shape", J. Sound Vib., 332(18), 4122-4135. https://doi.org/10.1016/j.jsv.2013.03.018.
- Saiidi, M., Douglas, B. and Feng, S. (1994), "Prestress force effect on vibration frequency of concrete bridges", J. Struct. Eng., 120(7), 2233-2241. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:7(2233).
- Singh, B.P., Yazdani, N. and Ramirez, G. (2013), "Effect of a time dependent concrete modulus of elasticity on prestress losses in bridge girders", Int. J. Concr. Struct. Mater., 7(3), 183-191. https://doi.org/10.1007/s40069-013-0037-0.
- Song, Y. (2000), Dynamics of Highway Bridges, Beijing: China Communications Press, China, Chapter 1, 113-120 (in Chinese).
- STRAUS7 (2004), Release 2.3.3. G+D Computing Pty Ltd, Copyright.
- Timoshenko, S.P. and Gere, J.M. (1961), Theory of Elastic Stability, McGraw-Hill, New York, USA.
- Toyota, Y., Hirose, T., Ono, S. and Shidara, K. (2017), "Experimental study on vibration characteristics of prestressed concrete beam", Procedia Eng., 171, 1165-1172. https://doi.org/10.1016/j.proeng.2017.01.483.
- Tullini, N. and Laudiero, F. (2008), "Dynamic identification of beam axial loads using one flexural mode shape", J. Sound Vib., 318(1-2), 131-147. https://doi.org/10.1016/j.jsv.2008.03.061.
- Tullini, N., Rebecchi, G. and Laudiero, F. (2012), "Bending tests to estimate the axial force in tie-rods", Mech. Res. Commun., 44, 57-64. https://doi.org/10.1016/j.mechrescom.2012.06.005.
- Tullini, N. (2013), "Bending tests to estimate the axial force in slender beams with unknown boundary conditions", Mech. Res. Commun., 53, 15-23. https://doi.org/10.1016/j.mechrescom.2013.07.011.
- Tullini, N., Rebecchi, G. and Laudiero, F. (2019), "Reliability of the tensile force identification in ancient tie-rods using one flexural mode shape", Int. J. Archit. Herit., 13(3), 402-410. https://doi.org/10.1080/15583058.2018.1563227.
- Wang, T.H., Huang, R. and Wang, T.W. (2013), "The variation of flexural rigidity for post-tensioned prestressed concrete beams", J. Mar. Sci. Technol., 21(3), 300-308. https://doi.org/10.6119/JMST-012-0508-2
- Young, W.C. and Budynas, R.G. (2002), Roark's Formulas for Stress and Strain, McGraw-Hill, Chapter 16, 767-768.
- Zhang, Y. and Li, R. (2007), "Natural frequency of full-prestressed concrete beam", Transactions Tianjin Univ., 13(5), 354-359.
Cited by
- Effect Steel Fibre Content on the Load-Carrying Capacity of Fibre-Reinforced Concrete Expansion Anchor vol.14, pp.24, 2021, https://doi.org/10.3390/ma14247757