DOI QR코드

DOI QR Code

Buckling analysis of functionally graded plates using HSDT in conjunction with the stress function method

  • Bakoura, Ahmed (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Bourada, Fouad (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Bousahla, Abdelmoumen Anis (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes) ;
  • Tounsi, Abdeldjebbar (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Benrahou, Kouider Halim (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Tounsi, Abdelouahed (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Al-Zahrani, Mesfer Mohammad (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals) ;
  • Mahmoud, S.R. (GRC Department, Jeddah Community College, King Abdulaziz University)
  • Received : 2020.02.16
  • Accepted : 2020.12.30
  • Published : 2021.01.25

Abstract

In this article, the mechanical buckling analysis of simply-supported functionally graded plates is carried out using a higher shear deformation theory (HSDT) in conjunction with the stress function method. The proposed formulation is variationally consistent, does not use a shear correction factor and gives rise to a variation of transverse shear stress such that the transverse shear stresses vary parabolically through the thickness satisfying the surface conditions without stress of shear. The properties of the plate are supposed to vary across the thickness according to a simple power law variation in terms of volume fraction of the constituents of the material. Numerical results are obtained to study the influences of the power law index and the geometric ratio on the critical buckling load.

Keywords

References

  1. Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., 35(1), 147-157. https://doi.org/10.12989/scs.2020.35.1.147.
  2. Ahmadi, H. and Foroutan, K. (2020), "Active vibration control of nonlinear stiffened FG cylindrical shell under periodic loads", Smart Struct. Syst., 25(6), 643-655. https://doi.org/10.12989/SSS.2020.25.6.643.
  3. Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
  4. Akbas, S.D. (2019), "Hygro-thermal post-buckling analysis of a functionally graded beam", Coupl. Syst. Mech., 8(5), 459-471. https://doi.org/10.12989/csm.2019.8.5.459.
  5. Akil, A. (2014), "Post buckling analysis of sandwich beams with functionally graded faces using a consistent higher order theory", Int. J. Civil Struct. Environ. Infrastr. Eng. Res. Develop., 4(2), 59-64.
  6. Al-Basyouni, K.S., Ghandourah, E., Mostafa, H.M. and Algarni, A. (2020), "Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body", Geomech. Eng., 21(1), 1-9. https://doi.org/10.12989/gae.2020.21.1.001.
  7. Al-Osta, M.A. (2019), "Shear behaviour of RC beams retrofitted using UHPFRC panels epoxied to the sides", Comput. Concrete, 24(1), 37-49. https://doi.org/10.12989/cac.2019.24.1.037.
  8. Arani, A.J. and Kolahchi, R. (2016), "Buckling analysis of embedded concrete columns armed with carbon nanotubes", Comput. Concrete, 17(5), 567-578. https://doi.org/10.12989/cac.2016.17.5.567.
  9. Babaei, H., Kiani, Y. and Eslami, M.R. (2020), "Large amplitude free vibrations of FGM shallow curved tubes in thermal environment", Smart Struct. Syst., 25(6), 693-705. https://doi.org/10.12989/SSS.2020.25.6.693.
  10. Belmahi, S., Zidour, M., Meradjah, M., Bensattalah, T. and Dihaj, A. (2018), "Analysis of boundary conditions effects on vibration of nanobeam in a polymeric matrix", Struct. Eng. Mech., 67(5), 517-525. https://doi.org/10.12989/sem.2018.67.5.517.
  11. Bensattalah, T., Hamidi, A., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2020), "Critical buckling load of triple-walled carbon nanotube based on nonlocal elasticity theory", J. Nano Res., 62, 108-119. https://doi.org/10.4028/www.scientific.net/JNanoR.62.108.
  12. Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R. (2016), "Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)", Comput. Concrete, 18(5), 1053-1063. https://doi.org/10.12989/cac.2016.18.6.1053.
  13. Bodaghi, M. and Saidi, A. (2010), "Levy-type solution for buckling analysis of thick functionally graded rectangular plates based on the higher-order shear deformation plate theory", Appl. Math. Model., 34(11), 3659-3673. https://doi.org/10.1016/j.apm.2010.03.016.
  14. Chakraverty, S. and Pradhan, K.K. (2014), "Free vibration of exponential functionally graded rectangular plates in thermal environment with general boundary conditions", Aerosp. Sci. Technol., 36, 132-156. https://doi.org/10.1016/j.ast.2014.04.005.
  15. Dihaj, A., Zidour, M., Meradjah, M., Rakrak, K., Heireche, H. and Chemi, A. (2018), "Free vibration analysis of chiral doublewalled carbon nanotube embedded in an elastic medium using non-local elasticity theory and Euler Bernoulli beam model", Struct. Eng. Mech., 65(3), 335-342. https://doi.org/10.12989/sem.2018.65.3.335.
  16. Eltaher, M.A., Mohamed, S.A. and Melaibari, A. (2020), "Static stability of a unified composite beams under varying axial loads", Thin Wall. Struct., 147, 106488. https://doi.org/10.1016/j.tws.2019.106488.
  17. Esmaeili, M. and Tadi Beni, Y. (2019), "Vibration and buckling analysis of functionally graded flexoelectric smart beam", J. Appl. Comput. Mech., 5(5), 900-917. https://doi.org/10.22055/jacm.2019.27857.1439.
  18. Farrokhian, A. (2020), "Buckling response of smart plates reinforced by nanoparticles utilizing analytical method", Steel Compos. Struct., 35(1), 1-12. http://dx.doi.org/10.12989/scs.2020.35.1.001.
  19. Fekrar, A., Meiche, E., Bessaim, N., Tounsi, A. and Bedia, E.A.A. (2012), "Buckling analysis of functionally graded hybrid composite plates using a new four variable refined plate theory", Steel Compos. Struct., 13(1), 91-107. https://doi.org/10.12989/scs.2012.13.1.091.
  20. Foroutan, K. and Ahmadi, H. (2020), "Simultaneous resonances of SSMFG cylindrical shells resting on viscoelastic foundations", Steel Compos. Struct., 37(1), 51-73. https://doi.org/10.12989/SCS.2020.37.1.051.
  21. Ghandourh, E.E. and Abdraboh, A.M. (2020), "Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models", Steel Compos. Struct., 36(3), 293-305. https://doi.org/10.12989/SCS.2020.36.3.293.
  22. Hadji, L. (2020a), "Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model", Smart Struct. Syst., 26(2), 253-262. https://doi.org/10.12989/SSS.2020.26.2.253.
  23. Hadji, L. (2020b), "Vibration analysis of FGM beam: Effect of the micromechanical models", Coupl. Syst. Mech., 9(3), 265-280. https://doi.org/10.12989/csm.2020.9.3.265.
  24. Hamidi, A., Zidour, M., Bouakkaz, K. and Bensattalah, T. (2018), "Thermal and small-scale effects on vibration of embedded armchair single-walled carbon nanotubes", J. Nano Res., 51, 24-38. https://doi.org/10.4028/www.scientific.net/JNanoR.51.24.
  25. Hanifehlou, S. and Mohammadimehr, M. (2020), "Buckling analysis of sandwich beam reinforced by GPLs using various shear deformation theories", Comput. Concrete, 25(5), 427-432. http://dx.doi.org/10.12989/cac.2020.25.5.427
  26. Javaheri, R. and Eslami, M.R. (2002a), "Thermal buckling of functionally graded plates", AIAA, 40(1), 162-169. https://doi.org/10.2514/2.1626.
  27. Javaheri, R. and Eslami, M.R. (2002b), "Thermal buckling of functionally graded plates based on higher order theory", J Therm. Stress., 25(7), 603-625. https://doi.org/10.1080/01495730290074333.
  28. Kar, V.R., Panda, S.K. and Mahapatra, T.R. (2016), "Thermal buckling behaviour of shear deformable functionally graded single/doubly curved shell panel with TD and TID properties", Adv. Mater. Res., 5(4), 205-221. https://doi.org/10.12989/amr.2016.5.4.205.
  29. Lanhe, W. (2004), "Thermal buckling of a simply supported moderately thick rectangular FGM plate", Compos. Struct., 64, 211-218. https://doi.org/10.1016/j.compstruct.2003.08.004.
  30. Librescu, L. and Lin, W. (1997). "Postbuckling and vibration of shear deformable flat and curved panels on a non-linear elastic foundation", Int. J. Nonlin. Mech., 32(2), 211-225. https://doi.org/10.1016/s0020-7462(96)00057-1.
  31. Lin, W. and Librescu, L. (1998). "Thermomechanical postbuckling of geometrically imperfect shear-deformable flat and curved panels on a nonlinear elastic foundation", Int. J. Eng. Sci., 36(2), 189-206. https://doi.org/10.1016/s0020-7225(97)00055-4.
  32. Mantari, J.L. and Granados, E.V. (2015), "Thermoelastic analysis of advanced sandwich plates based on a new quasi-3D hybrid type HSDT with 5 unknowns", Compos.: Part B, 69, 317-334. https://doi.org/10.1016/j.compositesb.2014.10.009.
  33. Melaibari, A., Khoshaim, A.B., Mohamed, S.A. and Eltaher, M. A. (2020), "Static stability and of symmetric and sigmoid functionally graded beam under variable axial load", Steel Compos. Struct., 35(5), 671-685. https://doi.org/10.12989/SCS.2020.35.5.671.
  34. Merzoug, M., Bourada, M., Sekkal, M., Ali Chaibdra, A., Belmokhtar, C., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. Eng., 22(4), 361-374. https://doi.org/10.12989/gae.2020.22.4.361
  35. Mirjavadi, S.S., Forsat, M., Yahya, Y.Z., Barati, M.R., Jayasimha, A.N. and Khan, I. (2020), "Finite element based post-buckling analysis of refined graphene oxide reinforced concrete beams with geometrical imperfection", Comput. Concrete, 25(4), 283-291. http://dx.doi.org/10.12989/cac.2020.25.4.283
  36. Mohammadi, M., Saidi, A.R. and Jomehzadeh, E. (2010), "A novel analytical approach for the buckling analysis of moderately thick functionally graded rectangular plates with two simply supported opposite edges", Proc. Inst. Mech. Engrs. Part C J. Mech. Eng. Sci., 224(9), 1831-1841. https://doi.org/10.1243/09544062JMES1804.
  37. Motezaker, M. and Eyvazian, A. (2020), "Post-buckling analysis of Mindlin Cut out-plate reinforced by FG-CNTs", Steel Compos. Struct., 34(2), 289-297. http://dx.doi.org/10.12989/scs.2020.34.2.289.
  38. Motezaker, M., Jamali, M. and Kolahchi, R. (2020), "Application of differential cubature method for nonlocal vibration, buckling and bending response of annular nanoplates integrated by piezoelectric layers based on surface-higher order nonlocal-piezoelasticity theory", J. Comput. Appl. Math., 369, 112625. https://doi.org/10.1016/j.cam.2019.112625.
  39. Mousavi, M., Mohammadimehr, M. and Rostami, R. (2019), "Analytical solution for buckling analysis of micro sandwich hollow circular plate", Comput. Concrete, 24(3), 185-192. https://doi.org/10.12989/cac.2019.24.3.185.
  40. Nebab, M., Ait Atmane, H., Bennai, R. and Tahar, B. (2019), ''Effect of nonlinear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory'', Earthq. Struct., 17(5), 447-462. https://doi.org/10.12989/eas.2019.17.5.447.
  41. Nebab, M., Benguediab, S., Ait Atmane, H. and Bernard, F. (2020), ''A simple quasi-3D HDST for dynamic behavior of advanced composite plates with the effect of variables elastic foundations'', Geomech. Eng., 22(5), 415-431. http://dx.doi.org/10.12989/gae.2020.22.5.415.
  42. Nejadi, M.M. and Mohammadimehr, M. (2020), "Analysis of a functionally graded nanocomposite sandwich beam considering porosity distribution on variable elastic foundation using DQM: Buckling and vibration behaviors", Comput. Concrete, 25(3), 215-224. http://dx.doi.org/10.12989/cac.2020.25.3.215.
  43. Othman, M. and Fekry, M. (2018), "Effect of rotation and gravity on generalized thermo-viscoelastic medium with voids", Multidisc. Model. Mater. Struct., 14(2), 322-338. https://doi.org/10.1108/MMMS-08-2017-0082.
  44. Panjehpour, M., Loh, E.W.K. and Deepak, T.J. (2018), "Structural insulated panels: State-of-the-art", Trend. Civil Eng. Arch., 3(1) 336-340. https://doi.org/10.32474/TCEIA.2018.03.000151
  45. Pradhan, K.K. and Chakraverty, S. (2015), "Free vibration of functionally graded thin elliptic plates with various edge supports", Struct. Eng. Mech., 53(2), 337-354. https://doi.org/10.12989/sem.2015.53.2.337.
  46. Rachedi, M.A., Benyoucef, S., Bouhadra, A., Bachir Bouiadjra, R., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. https://doi.org/10.12989/gae.2020.22.1.065
  47. Rahmani, M., Mohammadi, Y., Kakavand, F. and Raeisifard, H. (2020), "Vibration analysis of different types of porous FG conical sandwich shells in various thermal surroundings", J. Appl. Comput. Mech., 6(3), 416-432. https://doi.org/10.22055/jacm.2019.29442.1598.
  48. Rostami, R., Rahaghi, M.I. and Mohammadimehr, M. (2020), "Nonlinear forced vibration of sandwich plate with considering FG core and CNTs reinforced nano-composite face sheets", Smart Struct. Syst., 26(2), 185-193. https://doi.org/10.12989/SSS.2020.26.2.185.
  49. Safa, A., Hadji, L., Bourada, M. and Zouatnia, N. (2019), "Thermal vibration analysis of FGM beams Using an efficient shear deformation beam theory", Earthq. Struct., 17(3), 329-336. https://doi.org/10.12989/eas.2019.17.3.329.
  50. Sahoo, B., Sahoo, B., Sharma, N., Mehar, K. and Panda, S.K. (2020), "Numerical buckling temperature prediction of graded sandwich panel using higher order shear deformation theory under variable temperature loading", Smart Struct. Syst., 26(5), 641-656. https://doi.org/10.12989/SSS.2020.26.5.641.
  51. Sahouane, A., Hadji, L. and Bourada, M. (2019), "Numerical analysis for free vibration of functionally graded beams using an original HSDBT", Earthq. Struct., 17(1), 31-37. https://doi.org/10.12989/eas.2019.17.1.031.
  52. Samsam Shariat, B.A. and Eslami, M.R. (2006), "Thermal buckling of imperfect functionally graded plates", Int. J. Solid. Struct., 43, 4082-4096. https://doi.org/10.1016/j.ijsolstr.2005.04.005.
  53. Samsam Shariat, B.A. and Eslami, M.R. (2007), "Buckling of thick functionally graded plates under mechanical and thermal loads", Compos. Struct., 78, 433-439. https://doi.org/10.1016/j.compstruct.2005.11.001.
  54. Samsam Shariat, B.A. and Eslami, M.R. (2007), "Buckling of thick functionally graded plates under mechanical and thermal loads", Compos Struct, 78, 433-439. https://doi.org/10.1016/j.compstruct.2005.11.001.
  55. Sayyad, A. and Ghumare, S. (2019), "A new quasi-3D model for functionally graded plates", J. Appl. Comput. Mech., 5(2), 367-380. https://doi.org/10.22055/jacm.2018.26739.1353.
  56. Selmi, A. (2019), "Effectiveness of SWNT in reducing the crack effect on the dynamic behavior of aluminium alloy", Adv. Nano Res., 7(5), 365-377. https://doi.org/10.12989/anr.2019.7.5.365.
  57. Selmi, A. (2020), "Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam", Smart Struct. Syst., 26(3), 361-371. https://doi.org/10.12989/SSS.2020.26.3.361.
  58. She, G.L., Liu, H.B. and Karami, B. (2020), "On resonance behavior of porous FG curved nanobeams", Steel Compos. Struct., 36(2), 179-186. https://doi.org/10.12989/SCS.2020.36.2.179.
  59. Shi, G. (2007). "A new simple third-order shear deformation theory of plates", Int. J. Solid. Struct., 44(13), 4399-4417. https://doi.org/10.1016/j.ijsolstr.2006.11.031.
  60. Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct., 99, 76-87. https://doi.org/10.1016/j.compstruct.2012.11.018.
  61. Swaminathan, K. and Naveenkumar, D.T. (2014), "Higher order refined computational models for the stability analysis of FGM plates: Analytical solutions", Eur. J. Mech. A/Solid., 47, 349-361. https://doi.org/10.1016/j.euromechsol.2014.06.003.
  62. Taherifar, R., Mahmoudi, M., Esfahani, M.H.N.E., Khuzani, N.A., Esfahani, S.N. and Chinaei, F. (2019), "Buckling analysis of concrete plates reinforced by piezoelectric nanoparticles", Comput. Concrete, 23(4), 295-301. http://dx.doi.org/10.12989/cac.2019.23.4.295.
  63. Talha, M. and Singh, B.N. (2010), "Static response and free vibration analysis of FGM plates using higher order shear deformation theory", Appl. Math. Model., 34(12), 3991-4011. https://doi.org/10.1016/j.apm.2010.03.034.
  64. Timesli, A. (2020), "An efficient approach for prediction of the nonlocal critical buckling load of double-walled carbon nanotubes using the nonlocal Donnell shell theory", SN Appl. Sci., 2, 407. https://doi.org/10.1007/s42452-020-2182-9.
  65. Yaghoobi, H. and Yaghoobi, P. (2013), "Buckling analysis of sandwich plates with FGM face sheets resting on elastic foundation with various boundary conditions: an analytical approach", Meccanica, 48, 2019-2035. https://doi.org/10.1007/s11012-013-9720-0.
  66. Yan, K., Zhang, Y., Cai, H. and Tahouneh, V. (2020), "Vibrational characteristic of FG porous conical shells using Donnell's shell theory", Steel Compos. Struct., 35(2), 249-260. https://doi.org/10.12989/SCS.2020.35.2.249.
  67. Yuan, Y., Zhao, K., Zhao, Y. and Kiani, K. (2020), "Nonlocalintegro-vibro analysis of vertically aligned monolayered nonuniform FGM nanorods", Steel Compos. Struct., 37(5), 551-569. https://doi.org/10.12989/SCS.2020.37.5.551.
  68. Yuksel, Y.Z. and Akbas, S.D. (2019), "Buckling analysis of a fiber reinforced laminated composite plate with porosity", J. Comput. Appl. Mech., 50(2), 375-380. https://doi.org/10.22059/JCAMECH.2019.291967.448.

Cited by

  1. Finite Element Modeling of Stress Behavior of FGM Nanoplates vol.2021, 2021, https://doi.org/10.1155/2021/9983024
  2. Analytical Solution of Composite Curved I-Beam considering Tangential Slip under Uniform Distributed Load vol.2021, 2021, https://doi.org/10.1155/2021/4094753
  3. A five-variable refined plate theory for thermal buckling analysis of composite plates vol.3, pp.2, 2021, https://doi.org/10.12989/cme.2021.3.2.135
  4. Mechanical analysis of bi-functionally graded sandwich nanobeams vol.11, pp.1, 2021, https://doi.org/10.12989/anr.2021.11.1.055
  5. Computational analysis of the nonlinear vibrational behavior of perforated plates with initial imperfection using NURBS-based isogeometric approach vol.8, pp.5, 2021, https://doi.org/10.1093/jcde/qwab043