References
- Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., 35(1), 147-157. https://doi.org/10.12989/scs.2020.35.1.147.
- Ahmadi, H. and Foroutan, K. (2020), "Active vibration control of nonlinear stiffened FG cylindrical shell under periodic loads", Smart Struct. Syst., 25(6), 643-655. https://doi.org/10.12989/SSS.2020.25.6.643.
- Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
- Akbas, S.D. (2019), "Hygro-thermal post-buckling analysis of a functionally graded beam", Coupl. Syst. Mech., 8(5), 459-471. https://doi.org/10.12989/csm.2019.8.5.459.
- Akil, A. (2014), "Post buckling analysis of sandwich beams with functionally graded faces using a consistent higher order theory", Int. J. Civil Struct. Environ. Infrastr. Eng. Res. Develop., 4(2), 59-64.
- Al-Basyouni, K.S., Ghandourah, E., Mostafa, H.M. and Algarni, A. (2020), "Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body", Geomech. Eng., 21(1), 1-9. https://doi.org/10.12989/gae.2020.21.1.001.
- Al-Osta, M.A. (2019), "Shear behaviour of RC beams retrofitted using UHPFRC panels epoxied to the sides", Comput. Concrete, 24(1), 37-49. https://doi.org/10.12989/cac.2019.24.1.037.
- Arani, A.J. and Kolahchi, R. (2016), "Buckling analysis of embedded concrete columns armed with carbon nanotubes", Comput. Concrete, 17(5), 567-578. https://doi.org/10.12989/cac.2016.17.5.567.
- Babaei, H., Kiani, Y. and Eslami, M.R. (2020), "Large amplitude free vibrations of FGM shallow curved tubes in thermal environment", Smart Struct. Syst., 25(6), 693-705. https://doi.org/10.12989/SSS.2020.25.6.693.
- Belmahi, S., Zidour, M., Meradjah, M., Bensattalah, T. and Dihaj, A. (2018), "Analysis of boundary conditions effects on vibration of nanobeam in a polymeric matrix", Struct. Eng. Mech., 67(5), 517-525. https://doi.org/10.12989/sem.2018.67.5.517.
- Bensattalah, T., Hamidi, A., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2020), "Critical buckling load of triple-walled carbon nanotube based on nonlocal elasticity theory", J. Nano Res., 62, 108-119. https://doi.org/10.4028/www.scientific.net/JNanoR.62.108.
- Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R. (2016), "Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)", Comput. Concrete, 18(5), 1053-1063. https://doi.org/10.12989/cac.2016.18.6.1053.
- Bodaghi, M. and Saidi, A. (2010), "Levy-type solution for buckling analysis of thick functionally graded rectangular plates based on the higher-order shear deformation plate theory", Appl. Math. Model., 34(11), 3659-3673. https://doi.org/10.1016/j.apm.2010.03.016.
- Chakraverty, S. and Pradhan, K.K. (2014), "Free vibration of exponential functionally graded rectangular plates in thermal environment with general boundary conditions", Aerosp. Sci. Technol., 36, 132-156. https://doi.org/10.1016/j.ast.2014.04.005.
- Dihaj, A., Zidour, M., Meradjah, M., Rakrak, K., Heireche, H. and Chemi, A. (2018), "Free vibration analysis of chiral doublewalled carbon nanotube embedded in an elastic medium using non-local elasticity theory and Euler Bernoulli beam model", Struct. Eng. Mech., 65(3), 335-342. https://doi.org/10.12989/sem.2018.65.3.335.
- Eltaher, M.A., Mohamed, S.A. and Melaibari, A. (2020), "Static stability of a unified composite beams under varying axial loads", Thin Wall. Struct., 147, 106488. https://doi.org/10.1016/j.tws.2019.106488.
- Esmaeili, M. and Tadi Beni, Y. (2019), "Vibration and buckling analysis of functionally graded flexoelectric smart beam", J. Appl. Comput. Mech., 5(5), 900-917. https://doi.org/10.22055/jacm.2019.27857.1439.
- Farrokhian, A. (2020), "Buckling response of smart plates reinforced by nanoparticles utilizing analytical method", Steel Compos. Struct., 35(1), 1-12. http://dx.doi.org/10.12989/scs.2020.35.1.001.
- Fekrar, A., Meiche, E., Bessaim, N., Tounsi, A. and Bedia, E.A.A. (2012), "Buckling analysis of functionally graded hybrid composite plates using a new four variable refined plate theory", Steel Compos. Struct., 13(1), 91-107. https://doi.org/10.12989/scs.2012.13.1.091.
- Foroutan, K. and Ahmadi, H. (2020), "Simultaneous resonances of SSMFG cylindrical shells resting on viscoelastic foundations", Steel Compos. Struct., 37(1), 51-73. https://doi.org/10.12989/SCS.2020.37.1.051.
- Ghandourh, E.E. and Abdraboh, A.M. (2020), "Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models", Steel Compos. Struct., 36(3), 293-305. https://doi.org/10.12989/SCS.2020.36.3.293.
- Hadji, L. (2020a), "Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model", Smart Struct. Syst., 26(2), 253-262. https://doi.org/10.12989/SSS.2020.26.2.253.
- Hadji, L. (2020b), "Vibration analysis of FGM beam: Effect of the micromechanical models", Coupl. Syst. Mech., 9(3), 265-280. https://doi.org/10.12989/csm.2020.9.3.265.
- Hamidi, A., Zidour, M., Bouakkaz, K. and Bensattalah, T. (2018), "Thermal and small-scale effects on vibration of embedded armchair single-walled carbon nanotubes", J. Nano Res., 51, 24-38. https://doi.org/10.4028/www.scientific.net/JNanoR.51.24.
- Hanifehlou, S. and Mohammadimehr, M. (2020), "Buckling analysis of sandwich beam reinforced by GPLs using various shear deformation theories", Comput. Concrete, 25(5), 427-432. http://dx.doi.org/10.12989/cac.2020.25.5.427
- Javaheri, R. and Eslami, M.R. (2002a), "Thermal buckling of functionally graded plates", AIAA, 40(1), 162-169. https://doi.org/10.2514/2.1626.
- Javaheri, R. and Eslami, M.R. (2002b), "Thermal buckling of functionally graded plates based on higher order theory", J Therm. Stress., 25(7), 603-625. https://doi.org/10.1080/01495730290074333.
- Kar, V.R., Panda, S.K. and Mahapatra, T.R. (2016), "Thermal buckling behaviour of shear deformable functionally graded single/doubly curved shell panel with TD and TID properties", Adv. Mater. Res., 5(4), 205-221. https://doi.org/10.12989/amr.2016.5.4.205.
- Lanhe, W. (2004), "Thermal buckling of a simply supported moderately thick rectangular FGM plate", Compos. Struct., 64, 211-218. https://doi.org/10.1016/j.compstruct.2003.08.004.
- Librescu, L. and Lin, W. (1997). "Postbuckling and vibration of shear deformable flat and curved panels on a non-linear elastic foundation", Int. J. Nonlin. Mech., 32(2), 211-225. https://doi.org/10.1016/s0020-7462(96)00057-1.
- Lin, W. and Librescu, L. (1998). "Thermomechanical postbuckling of geometrically imperfect shear-deformable flat and curved panels on a nonlinear elastic foundation", Int. J. Eng. Sci., 36(2), 189-206. https://doi.org/10.1016/s0020-7225(97)00055-4.
- Mantari, J.L. and Granados, E.V. (2015), "Thermoelastic analysis of advanced sandwich plates based on a new quasi-3D hybrid type HSDT with 5 unknowns", Compos.: Part B, 69, 317-334. https://doi.org/10.1016/j.compositesb.2014.10.009.
- Melaibari, A., Khoshaim, A.B., Mohamed, S.A. and Eltaher, M. A. (2020), "Static stability and of symmetric and sigmoid functionally graded beam under variable axial load", Steel Compos. Struct., 35(5), 671-685. https://doi.org/10.12989/SCS.2020.35.5.671.
- Merzoug, M., Bourada, M., Sekkal, M., Ali Chaibdra, A., Belmokhtar, C., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. Eng., 22(4), 361-374. https://doi.org/10.12989/gae.2020.22.4.361
- Mirjavadi, S.S., Forsat, M., Yahya, Y.Z., Barati, M.R., Jayasimha, A.N. and Khan, I. (2020), "Finite element based post-buckling analysis of refined graphene oxide reinforced concrete beams with geometrical imperfection", Comput. Concrete, 25(4), 283-291. http://dx.doi.org/10.12989/cac.2020.25.4.283
- Mohammadi, M., Saidi, A.R. and Jomehzadeh, E. (2010), "A novel analytical approach for the buckling analysis of moderately thick functionally graded rectangular plates with two simply supported opposite edges", Proc. Inst. Mech. Engrs. Part C J. Mech. Eng. Sci., 224(9), 1831-1841. https://doi.org/10.1243/09544062JMES1804.
- Motezaker, M. and Eyvazian, A. (2020), "Post-buckling analysis of Mindlin Cut out-plate reinforced by FG-CNTs", Steel Compos. Struct., 34(2), 289-297. http://dx.doi.org/10.12989/scs.2020.34.2.289.
- Motezaker, M., Jamali, M. and Kolahchi, R. (2020), "Application of differential cubature method for nonlocal vibration, buckling and bending response of annular nanoplates integrated by piezoelectric layers based on surface-higher order nonlocal-piezoelasticity theory", J. Comput. Appl. Math., 369, 112625. https://doi.org/10.1016/j.cam.2019.112625.
- Mousavi, M., Mohammadimehr, M. and Rostami, R. (2019), "Analytical solution for buckling analysis of micro sandwich hollow circular plate", Comput. Concrete, 24(3), 185-192. https://doi.org/10.12989/cac.2019.24.3.185.
- Nebab, M., Ait Atmane, H., Bennai, R. and Tahar, B. (2019), ''Effect of nonlinear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory'', Earthq. Struct., 17(5), 447-462. https://doi.org/10.12989/eas.2019.17.5.447.
- Nebab, M., Benguediab, S., Ait Atmane, H. and Bernard, F. (2020), ''A simple quasi-3D HDST for dynamic behavior of advanced composite plates with the effect of variables elastic foundations'', Geomech. Eng., 22(5), 415-431. http://dx.doi.org/10.12989/gae.2020.22.5.415.
- Nejadi, M.M. and Mohammadimehr, M. (2020), "Analysis of a functionally graded nanocomposite sandwich beam considering porosity distribution on variable elastic foundation using DQM: Buckling and vibration behaviors", Comput. Concrete, 25(3), 215-224. http://dx.doi.org/10.12989/cac.2020.25.3.215.
- Othman, M. and Fekry, M. (2018), "Effect of rotation and gravity on generalized thermo-viscoelastic medium with voids", Multidisc. Model. Mater. Struct., 14(2), 322-338. https://doi.org/10.1108/MMMS-08-2017-0082.
- Panjehpour, M., Loh, E.W.K. and Deepak, T.J. (2018), "Structural insulated panels: State-of-the-art", Trend. Civil Eng. Arch., 3(1) 336-340. https://doi.org/10.32474/TCEIA.2018.03.000151
- Pradhan, K.K. and Chakraverty, S. (2015), "Free vibration of functionally graded thin elliptic plates with various edge supports", Struct. Eng. Mech., 53(2), 337-354. https://doi.org/10.12989/sem.2015.53.2.337.
- Rachedi, M.A., Benyoucef, S., Bouhadra, A., Bachir Bouiadjra, R., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. https://doi.org/10.12989/gae.2020.22.1.065
- Rahmani, M., Mohammadi, Y., Kakavand, F. and Raeisifard, H. (2020), "Vibration analysis of different types of porous FG conical sandwich shells in various thermal surroundings", J. Appl. Comput. Mech., 6(3), 416-432. https://doi.org/10.22055/jacm.2019.29442.1598.
- Rostami, R., Rahaghi, M.I. and Mohammadimehr, M. (2020), "Nonlinear forced vibration of sandwich plate with considering FG core and CNTs reinforced nano-composite face sheets", Smart Struct. Syst., 26(2), 185-193. https://doi.org/10.12989/SSS.2020.26.2.185.
- Safa, A., Hadji, L., Bourada, M. and Zouatnia, N. (2019), "Thermal vibration analysis of FGM beams Using an efficient shear deformation beam theory", Earthq. Struct., 17(3), 329-336. https://doi.org/10.12989/eas.2019.17.3.329.
- Sahoo, B., Sahoo, B., Sharma, N., Mehar, K. and Panda, S.K. (2020), "Numerical buckling temperature prediction of graded sandwich panel using higher order shear deformation theory under variable temperature loading", Smart Struct. Syst., 26(5), 641-656. https://doi.org/10.12989/SSS.2020.26.5.641.
- Sahouane, A., Hadji, L. and Bourada, M. (2019), "Numerical analysis for free vibration of functionally graded beams using an original HSDBT", Earthq. Struct., 17(1), 31-37. https://doi.org/10.12989/eas.2019.17.1.031.
- Samsam Shariat, B.A. and Eslami, M.R. (2006), "Thermal buckling of imperfect functionally graded plates", Int. J. Solid. Struct., 43, 4082-4096. https://doi.org/10.1016/j.ijsolstr.2005.04.005.
- Samsam Shariat, B.A. and Eslami, M.R. (2007), "Buckling of thick functionally graded plates under mechanical and thermal loads", Compos. Struct., 78, 433-439. https://doi.org/10.1016/j.compstruct.2005.11.001.
- Samsam Shariat, B.A. and Eslami, M.R. (2007), "Buckling of thick functionally graded plates under mechanical and thermal loads", Compos Struct, 78, 433-439. https://doi.org/10.1016/j.compstruct.2005.11.001.
- Sayyad, A. and Ghumare, S. (2019), "A new quasi-3D model for functionally graded plates", J. Appl. Comput. Mech., 5(2), 367-380. https://doi.org/10.22055/jacm.2018.26739.1353.
- Selmi, A. (2019), "Effectiveness of SWNT in reducing the crack effect on the dynamic behavior of aluminium alloy", Adv. Nano Res., 7(5), 365-377. https://doi.org/10.12989/anr.2019.7.5.365.
- Selmi, A. (2020), "Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam", Smart Struct. Syst., 26(3), 361-371. https://doi.org/10.12989/SSS.2020.26.3.361.
- She, G.L., Liu, H.B. and Karami, B. (2020), "On resonance behavior of porous FG curved nanobeams", Steel Compos. Struct., 36(2), 179-186. https://doi.org/10.12989/SCS.2020.36.2.179.
- Shi, G. (2007). "A new simple third-order shear deformation theory of plates", Int. J. Solid. Struct., 44(13), 4399-4417. https://doi.org/10.1016/j.ijsolstr.2006.11.031.
- Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct., 99, 76-87. https://doi.org/10.1016/j.compstruct.2012.11.018.
- Swaminathan, K. and Naveenkumar, D.T. (2014), "Higher order refined computational models for the stability analysis of FGM plates: Analytical solutions", Eur. J. Mech. A/Solid., 47, 349-361. https://doi.org/10.1016/j.euromechsol.2014.06.003.
- Taherifar, R., Mahmoudi, M., Esfahani, M.H.N.E., Khuzani, N.A., Esfahani, S.N. and Chinaei, F. (2019), "Buckling analysis of concrete plates reinforced by piezoelectric nanoparticles", Comput. Concrete, 23(4), 295-301. http://dx.doi.org/10.12989/cac.2019.23.4.295.
- Talha, M. and Singh, B.N. (2010), "Static response and free vibration analysis of FGM plates using higher order shear deformation theory", Appl. Math. Model., 34(12), 3991-4011. https://doi.org/10.1016/j.apm.2010.03.034.
- Timesli, A. (2020), "An efficient approach for prediction of the nonlocal critical buckling load of double-walled carbon nanotubes using the nonlocal Donnell shell theory", SN Appl. Sci., 2, 407. https://doi.org/10.1007/s42452-020-2182-9.
- Yaghoobi, H. and Yaghoobi, P. (2013), "Buckling analysis of sandwich plates with FGM face sheets resting on elastic foundation with various boundary conditions: an analytical approach", Meccanica, 48, 2019-2035. https://doi.org/10.1007/s11012-013-9720-0.
- Yan, K., Zhang, Y., Cai, H. and Tahouneh, V. (2020), "Vibrational characteristic of FG porous conical shells using Donnell's shell theory", Steel Compos. Struct., 35(2), 249-260. https://doi.org/10.12989/SCS.2020.35.2.249.
- Yuan, Y., Zhao, K., Zhao, Y. and Kiani, K. (2020), "Nonlocalintegro-vibro analysis of vertically aligned monolayered nonuniform FGM nanorods", Steel Compos. Struct., 37(5), 551-569. https://doi.org/10.12989/SCS.2020.37.5.551.
- Yuksel, Y.Z. and Akbas, S.D. (2019), "Buckling analysis of a fiber reinforced laminated composite plate with porosity", J. Comput. Appl. Mech., 50(2), 375-380. https://doi.org/10.22059/JCAMECH.2019.291967.448.
Cited by
- Finite Element Modeling of Stress Behavior of FGM Nanoplates vol.2021, 2021, https://doi.org/10.1155/2021/9983024
- Analytical Solution of Composite Curved I-Beam considering Tangential Slip under Uniform Distributed Load vol.2021, 2021, https://doi.org/10.1155/2021/4094753
- A five-variable refined plate theory for thermal buckling analysis of composite plates vol.3, pp.2, 2021, https://doi.org/10.12989/cme.2021.3.2.135
- Mechanical analysis of bi-functionally graded sandwich nanobeams vol.11, pp.1, 2021, https://doi.org/10.12989/anr.2021.11.1.055
- Computational analysis of the nonlinear vibrational behavior of perforated plates with initial imperfection using NURBS-based isogeometric approach vol.8, pp.5, 2021, https://doi.org/10.1093/jcde/qwab043