References
- ACI 318-99 (1999), American Concrete Institute.
- Ali, M., Siarry, P. and Pant, M. (2012), "An efficient differential evaluation based algorithm for solving multi-objective optimization problems", Eur. J. Operat. Res., 217, 404-416. https://doi.org/10.1016/j.ejor.2011.09.025.
- Chen, L.C., Luh, C.J. and Jou, C. (2005), "Generating page clippings from web search results using a dynamically terminated genetic algorithm", Inform. Syst., 30(4), 299-316. https://doi.org/10.1016/j.is.2004.04.002.
- da Silva, W.R.L. and Stemberk, P. (2013), "Genetic-fuzzy approach to model concrete shrinkage", Comput. Concrete, 12(2), 109-129. https://doi.org/10.12989/cac.2013.12.2.109.
- Deb, K., Agarwal, S., Pratap, A. and Meyarivan, T. (2000), "A fast and elitist multi-objective genetic algorithm: NSGA-II", Technical Report 200001, IIT Kanpur, KanGAL.
- Deb, K., Agarwal, S., Pratap, A. and Meyarivan, T. (2000), "A fast and elitist multi-objectivegenetic algorithm: NSGA-II", Technical Report 200001, IIT Kanpur, KanGAL.
- Erdogan, Y.S. and Bakir, P.G. (2013), "Evaluation of the different genetic algorithm parameters and operators for the finite element model updating problem", Comput. Concrete, 11(6), 541-569. https://doi.org/10.12989/cac.2013.11.6.541.
- Haeser, G. and Melo, V. (2015), "Convergence detection for optimization algorithms: Approximate-KKT stopping criterion when Lagrange multipliers are not available", Operat. Res. Lett., 43(5), 484-488. https://doi.org/10.1016/j.orl.2015.06.009.
- Justin, Y.Q.W., Shivom, S. and Rangaiah. G.H. (2016), "Design of shell-and-tube heat exchangers for multiple objectives using elitist non-dominated sorting genetic algorithm with cutting criteria", Appl. Therm. Eng., 93, 888-899. https://doi.org/10.1016/j.applthermaleng.2015.10.055.
- Kaya, M. (2001), "Design of reinforced concrete deep beams using genetic algorithms", Gazi Universty Institute of Science and Technology, Ankara.
- Kaya, M. (2011), "The effects of a new selection operator on the performance of genetic algorithm", Appl. Math. Comput., 217, 7669-7678. https://doi.org/10.1016/j.amc.2011.02.070.
- Kaya, M. (2011), "The effects of two new crossover operators on genetic algorithm performance", Appl. Soft Comput., 11, 881-890. https://doi.org/10.1016/j.asoc.2010.01.008.
- Kaya, M. (2018), "Developing a new mutation operator to solve the RC deep beam problems by aid of genetic algorithm", Comput. Concrete, 22(5), 493-500. https://doi.org/10.12989/cac.2018.22.5.493.
- Kukkonen, S. and Lampinen, J. (2004), "An extension of generalized differential evolution for multi-objective optimization with constraints", International Conference on Parallel Problem Solving from Nature, Berlin, Heidelberg, 752-761.
- Li, H., Jiao, Y.C. and Zhang, L. (2010), "Hybrid differential evolution with a simplified quadratic approximation for constrained optimization problems", Eng. Optim., 43(2), 115-134. https://doi.org/10.1080/0305215X.2010.481021.
- Marti, L., Garci, J., Berlanga, A. and Molina, J.M. (2016), "A stopping criterion for multi-objective optimization evolutionary algorithms", Inform. Sci., 367-368(1), 700-718. https://doi.org/10.1016/j.ins.2016.07.025.
- Marti, L., Garcia, J., Berlanga, A. and Molina, J.M. (2009), "An approach to stopping criteria for multi-objective optimization, evolutionary algorithms: The MGBMcriterion", IEEE Congress on Evolutionary Computation, 1263-1270.
- Neuro Dimension (2014), http:/www.google.com.tr/?gws_rd=ssl#q=genetic+algorithm+cutting+criterias.
- Parichatprecha, R. and Nimityongskul, P. (2009), "An integrated approach for optimum design of HPC mix proportion using genetic algorithm and artificial neural networks", Comput. Concrete, 6(3), 253-268. https://doi.org/10.12989/cac.2009.6.3.253.
- Park, W.J., Noguchi, T. and Lee, H.S. (2013), "Genetic algorithm in mix proportion design of recycled aggregate concrete. Comput. Concrete, 11(3), 183-199. https://doi.org/10.12989/cac.2013.11.3.183.
- Rangaiah, G.P., Sharma, S. and Lin, H.W. (2017), "Evaluation of two termination criteria in evolutionary algorithms for multiobjective optimization of complex chemical processes", Chem. Eng. Res. Des., 124, 58-65. https://doi.org/10.1016/j.cherd.2017.05.030.
- Rudenko, O. and Schoenauer, M. (2004), "A steady performance stopping criterion for Pareto-based evolutionary algorithm", Proceedings of the 6th Int. Multi-objective Programming and Goal Programming.
- Sgambi, L., Gkoumas, K. and Bontempi, F. (2014), "Genetic algorithm optimization of precast hollow core slabs", Comput. Concrete, 13(3), 389-409. https://doi.org/10.12989/cac.2014.13.3.389.
- Sharma, S. and Rangaiah, G.P. (2013), "An improved multiobjective differential evolution with a cutting criterion for optimizing chemical processes", Comput. Chem. Eng., 56, 155-173. https://doi.org/10.1016/j.compchemeng.2013.05.004.
- Sindhya, K., Deb, K. and Miettinen, K. (2008), "A local search based evolutionary multi-objective optimization approach for fast and accurate convergence", Lecture Notes in Computer Science, 815-824.
- Sugunthan, P.N. (2007), "Report on performance assessment of multi objective optimization algorityhms", CEC Special Session on the Performance Assessment of Real Paremeter MOEAs.
- Trautmann, H., Ligges, U., Mehnen, J. and Preuss, M. (2008), "A convergence criterion for multi-objective evolutionary algorithms based on systematic statistical testing", Lecture Notes in Computer Science, 825-836.
- Van Veldhuizen, D.A. and Lamont, G.B. (1998), "Evolutionary computation and conver-gence to a Pareto front",
- Wagner, T. and Trautmann, H. (2009), "Online convergence detection for evolutionary multi-objective algorithms revisited", IEEE Congress on Evolutionary Computation, 1-8.
- Wagner, T., Trautmann, H. and Naujoks, B. (2009), "OCD: Online convergence detection for evolutionary multi-objective algorithms based on statistical testing", Lecture Notes in Computer Science, 198-215.
- Wang, Y.N., Wu, L.H. and Yuan, X.F. (2010), "Multi-objective self-adaptive differential evolution with elitist archive and crowding entropy based diversity measure", Soft Comput., 14, 193-209. https://doi.org/10.1007/s00500-008-0394-9.
- Webb-Robertson, B.J.M., Jarman, K.H., Harvey, S.D., Posse, C. and Wright, B.W. (2005), "An improved optimization algorithm and a Bayes factor termination criterion for sequential projection pursuit", Chemom. Intel. Lab. Syst., 77(1-2), 149-160. https://doi.org/10.1016/j.chemolab.2004.09.014
- Wong, J.Y., Sharma, S. and Rangaiah, G.P. (2016), "Design of shell-and-tube heat exchangers for multiple objectives using elitist non-dominated sorting genetic algorithm with termination criteria", Appl. Therm. Eng., 93, 888-899. https://doi.org/10.1016/j.applthermaleng.2015.10.055.
- Zhang, J. and Sanderson, A.C. (2008), "Self-adaptive multiobjective differential evolution with the directional information provided by archived inferior solutions", IEEE Congress on Evolutionary Computation, 2801-2810.
- Zhang, Q., Zhou, A., Zhano, S., Suganthan, P.N., Liu, W. and Tiwari, S. (2009), "Multi-objective optimization test instances for the CEC 2009 special session and competition", CEC Special Session on the Performance Assessment of MultiObjective Optimization Algorithms.
- Zhou, G., Zhang, C., Lu, F. and Zhang, J. (2020), "Integrated optimization of cutting parameters and tool path for cavity milling considering carbon emissions", J. Clean. Prod., 250, 119454. https://doi.org/10.1016/j.jclepro.2019.119454.
- Zitzler, E. and Thiele, L. (1998), "Multi-objective optimization using evolutionary algorithms: A comparative case study", International Conference on Parallel Problem Solving from Nature, Berlin, Heidelberg, 292-301.
- Zitzler, E. and Thiele, L. (1998), "Multi-objective optimization using evolutionary algorithms: A comparative case study", International Conference on Parallel Problem Solving from Nature, Springer, Berlin, Heidelberg, 292-301.
- Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M. and Fonseca, V.G. (2003), "Perfor-mance assessment of multi-objective optimizers: An analysis and review", IEEE Tran. Evol. Comput., 7(2), 117-132. https://doi.org/10.1109/TEVC.2003.810758.