Acknowledgement
This research is funded by National University of Civil Engineering (NUCE)-Vietnam, under grant number 28-2020/KHXD-TĐ.
References
- Abbas, H., Paul, D.K., Godbole, P.N. and Nayak, G.C. (1995), "Soft missile impact on rigid targets", Int. J. Impact Eng., 16(5), 727-737. https://doi.org/10.1016/0734-743X(95)00004-T.
- ACI 349-1 (2001), Requirements for Nuclear Safety Related Concrete Structures, American Concrete Institute.
- Adley, M.D., Frank, A.O., Danielson, K.T., Akers, S.A. and O'Daniel, J.L. (2010), "The virtual penetration laboratory: new developments for projectile penetration in concrete", Comput. Concrete, 7(2), 87-102. https://doi.org/10.12989/cac.2010.7.2.087.
- Anderson Jr, C.E. (2017), "Analytical models for penetration mechanics: a review", Int. J. Impact Eng., 108, 3-26. https://doi.org/10.1016/j.ijimpeng.2017.03.018.
- Bielak, J. (1976), "Modal analysis for building-soil interaction", J. Eng. Mech. Div., 102(5), 771-786. https://doi.org/10.1061/JMCEA3.0002160
- Choudhury, M.A., Siddiqui, N.A. and Abbas, H. (2002), "Reliability analysis of a buried concrete target under missile impact", Int. J. Impact Eng., 27(8), 791-806. https://doi.org/10.1016/S0734-743X(02)00025-8.
- Corbett, G.G., Reid, S.R. and Johnson, W. (1996), "Impact loading of plates and shells by free-flying projectiles: a review", Int. J. Impact Eng., 18(2), 141-230. https://doi.org/10.1016/0734-743X(95)00023-4.
- Fasanella, E.L., Jackson, K.E. and Kellas, S (2008), "Soft soil impact testing and simulation of aerospace structures", 10th International LS-DYNA User's Conference, Dearborn, MI, United States.
- Forrestal, M.J., Altman, B.S., Cargile, J.D. and Hanchak, S.J. (1994), "An empirical equation for penetration depth of ogive-nose projectiles into concrete targets", Int. J. Impact Eng., 15(4), 395-405. https://doi.org/10.1016/0734-743X(94)80024-4.
- Forrestal, M.J., Longcope, D.B. and Norwood, F.R. (1981), "A model to estimate forces on conical penetrators into dry porous rock", J. Appl. Mech., Tran., ASME, 48(1), 25-29. https://doi.org/10.1115/1.3157587.
- Forrestal, M.J. and Luk, V.K. (1992), "Penetration into soil targets", Int. J. Impact Eng., 12(3), 427-444. https://doi.org/10.1016/0734-743X(92)90167-R.
- Foster Jr, W.A., Johnson, C.E., Chiroux, R.C. and Way, T.R. (2005), "Finite element simulation of cone penetration", Appl. Math. Comput., 162(2), 735-749. https://doi.org/10.1016/j.amc.2004.01.012.
- Frew, D.J., Hanchak, S.J., Green, M.L. and Forrestal, M.J. (1998), "Penetration of concrete targets with ogive-nose steel rods", Int. J. Impact Eng., 21(6), 489-97. https://doi.org/10.1016/S0734-743X(98)00008-6.
- Goldsmith, W. (1999), "Non-ideal projectile impact on targets", Int. J. Impact Eng., 22(2-3), 95. https://doi.org/10.1016/S0734-743X(98)00031-1.
- Iguchi, M. (1978), "Dynamic interaction of soil-structure with elastic rectangular foundation", Fifth Japanese Earthquake Engineering Symposium, Tokyo.
- Islam, M.J., Liu, Z. and Swaddiwudhipong, S. (2011), "Numerical study on concrete penetration/perforation under high velocity impact by ogive-nose steel projectile", Comput. Concrete, 8(1), 111-123. https://doi.org/10.12989/cac.2011.8.1.111.
- James, O. (2010), "Comparing finite element and meshfree particle formulations for projectile penetration into fiber reinforced concrete", Comput. Concrete, 7(2), 103-118. https://doi.org/10.12989/cac.2010.7.2.103.
- LS-DYNA Keyword User's Manual (2007), Livermore Software Technology Corporation.
- LS-DYNA Theory Manual (2006), Livermore Software Technology Corporation.
- Lu, G., Li, X. and Wang, K. (2012), "A numerical study on the damage of projectile impact on concrete targets", Comput. Concrete, 9(1), 21-33. https://doi.org/10.12989/cac.2012.9.1.021.
- Mobaraki, B. and Vaghefi, M. (2015), "Numerical study of the depth and cross-sectional shape of tunnel under surface explosion", Tunnel. Underg. Space Technol., 47, 114-122. https://doi.org/10.1016/j.tust.2015.01.003.
- Mussa, M.H., Mutalib, A.A., Hamid, R., Naidu, S.R., Radzi, N. A.M. and Abedini, M. (2017), "Assessment of damage to an underground box tunnel by a surface explosion", Tunnel. Underg. Space Technol., 66, 64-76. https://doi.org/10.1016/j.tust.2017.04.001.
- Norwood, F.R. and Sears, M.P. (1982), "A nonlinear model for the dynamics of penetration into geological targets", J. Appl. Mech., Tran., ASME, 49(1), 26-30. https://doi.org/10.1115/1.3162065.
- Qi, G., Xiong, F., Huang, Q., Xie, L. and Yao, Z. (2013), "Soil-underground structure dynamic interaction considering soil nonlinearity BT-Clean energy systems in the subsurface: production, storage and conversion", Eds. Hou, M.Z., Xie, H. and Were, P., 317-327, Springer, Berlin, Heidelberg.
- Sevim, B. (2013), "Assessment of 3D earthquake response of the Arhavi highway tunnel considering soil-structure interaction", Comput. Concrete, 11(1), 51-61. https://doi.org/10.12989/cac.2013.11.1.051.
- Siddiqui, N.A., Khan, F.H. and Umar, A. (2009), "Reliability of underground concrete barriers against normal missile impact", Comput. Concrete, 6(1), 79-93. https://doi.org/10.12989/cac.2009.6.1.079.
- Siddiqui, N.A., Choudhury, M.A. and Abbas, H. (2002), "Reliability analysis of projectile penetration into geological targets", Reliab. Eng. Syst. Saf., 78(1), 13-19. https://doi.org/10.1016/S0951-8320(02)00050-9.
- Thomas, M.A., Chitty, D.E., Gildea, M.L. and T'Kindt, C.M. (2008), Constitutive Soil Properties for Unwashed Sand and Kennedy Space Center, NASA/CR-2008-215334.
- Tsubakihara, Y., Kishida, H. and Nishiyama, T. (1993), "Friction between cohesive soils and steel", Soil. Found., 33(2), 145-156. https://doi.org/10.3208/sandf1972.33.2_145.
- Wang, H.F., Lou, M.L., Chen, X. and Zhai, Y.M. (2013), "Structure-soil-structure interaction between underground structure and ground structure", Soil Dyn. Earthq. Eng., 54, 31-38. https://doi.org/10.1016/j.soildyn.2013.07.015.
- Wang, S. (2017), "Evaluation of underground pipe-structure interface for surface impact load", Nucl. Eng. Des., 317, 59-68. https://doi.org/10.1016/j.nucengdes.2017.03.021.
- Warren, T.L. (2016), "The effect of target inertia on the penetration of aluminum targets by rigid ogive-nosed long rods", Int. J. Impact Eng., 91, 6-13. https://doi.org/10.1016/j.ijimpeng.2015.12.007.
- Wolf, J.P. (1985), Dynamic Soil-Structure Interaction, Prentice Hall. New York, USA.