DOI QR코드

DOI QR Code

포토 리소그래피 공정을 위한 Ti(10 nm)-Buffered층 위에 직접 성장된 고품질 무전사 단층 그래핀 공정

High Quality Non-Transfer Single-Layer Graphene Process Grown Directly on Ti(10 nm)-Buffered Layer for Photo Lithography Process

  • 오거룡 (충남대학교 신소재공학과) ;
  • 한이레 (충남대학교 신소재공학과) ;
  • 엄지호 (충남대학교 신소재공학과) ;
  • 윤순길 (충남대학교 신소재공학과)
  • Oh, Keo-Ryong (Department of Materials Science and Engineering, Chungnam National University) ;
  • Han, Yire (Department of Materials Science and Engineering, Chungnam National University) ;
  • Eom, Ji-Ho (Department of Materials Science and Engineering, Chungnam National University) ;
  • Yoon, Soon-Gil (Department of Materials Science and Engineering, Chungnam National University)
  • 투고 : 2020.10.05
  • 심사 : 2020.10.22
  • 발행 : 2021.01.01

초록

Single-layer graphene is grown directly on Ti-buffered SiO2 at 100℃. As a result of the AFM measurement of the Ti buffer layer, the roughness of approximately 0.2 nm has been improved. Moreover, the Raman measurement of graphene grown on it shows that the D/G intensity ratio is extremely small, approximately 0.01, and there are no defects. In addition, the 2D/G intensity ratio had a value of approximately 2.1 for single-layer graphene. The sheet resistance is also 89 Ω/□, demonstrating excellent characteristics. The problem was solved by using graphene and a lift-off patterning method. Low-temperature direct-grown graphene does not deteriorate after the patterning process and can be used for device and micro-patterning research.

키워드

과제정보

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (No.NRF-2018R1A2A1A0 5018536).

참고문헌

  1. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stomer, Solid State Commun., 146, 351 (2008). [DOI: https://doi.org/10.1016/j.ssc.2008.02.024]
  2. S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, Phys. Rev. Lett., 100, 016602 (2008). [DOI: https://doi.org/10.1103/PhysRevLett.100.016602]
  3. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrahan, F. Miao, and C. N. Lau , Nano Lett., 8, 902 (2008). [DOI: https://doi.org/10.1021/nl0731872]
  4. C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science, 321, 385 (2008). [DOI: https://doi.org/10.1126/science.1157996]
  5. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, Adv. Mater., 22, 3906 (2010). [DOI: https://doi.org/10.1002/adma.201001068]
  6. L. Dai, Carbon Nanotechnology (Elsevier Science, Amsterdam, The Netherlands, 2006) p. 633.
  7. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Ju ng, E. Tu tu c, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science, 324, 1312 (2009). [DOI: https://doi.org/10.1126/science.1171245]
  8. S. Bae, S. J. Kim, D. Shin, J. H. Ahn, and B. H. Hong, Phys. Scr., 2012, 014024 (2012). [DOI: https://doi.org/10.1088/0031-8949/2012/T146/014024]
  9. J. An, E. Voelkl, J. W. Suk, X. Li, C. W. Magnuson, L. Fu, P. Tiemeijer, M. Bischoff, B. Freitag, E. Popova, and R. S. Ruoff, ACS Nano, 5, 2433 (2011). [DOI: https://doi.org/10.1021/nn103102a]
  10. Y. Han, B. J. Park, J. H. Eom, and S. G. Yoon, Korean J. Mater. Res., 30, 142 (2020). [DOI: https://doi.org/10.3740/MRSK.2020.30.3.142]
  11. B. J. Park, J. S. Choi, J. H. Eom, H. Ha, H. Y. Kim, S. Lee, H. Shin, and S. G. Yoon, ACS Nano, 12, 2008 (2018). [DOI: https://doi.org/10.1021/acsnano.8b00015]
  12. H. A. Song, B. J. Park, and S. G. Yoon, J. Korean Inst. Electr. Electron. Mater. Eng., 25, 387 (2012). [DOI: https://doi.org/10.4313/JKEM.2012.25.5.387]