과제정보
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A3B07050259).
참고문헌
- Miltenburg NC, Boogerd W. Chemotherapy-induced neuropathy: a comprehensive survey. Cancer Treat Rev 2014; 40: 872-82. https://doi.org/10.1016/j.ctrv.2014.04.004
- Seretny M, Currie GL, Sena ES, Ramnarine S, Grant R, MacLeod MR, et al. Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: a systematic review and meta-analysis. Pain 2014; 155: 2461-70. https://doi.org/10.1016/j.pain.2014.09.020
- Starobova H, Vetter I. Pathophysiology of chemotherapy-induced peripheral neuropathy. Front Mol Neurosci 2017; 10: 174. https://doi.org/10.3389/fnmol.2017.00174
- Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G. Immunological aspects of cancer chemotherapy. Nat Rev Immunol 2008; 8: 59-73. https://doi.org/10.1038/nri2216
- Wang XM, Lehky TJ, Brell JM, Dorsey SG. Discovering cytokines as targets for chemotherapy-induced painful peripheral neuropathy. Cytokine 2012; 59: 3-9. https://doi.org/10.1016/j.cyto.2012.03.027
- Loprinzi CL, Maddocks-Christianson K, Wolf SL, Rao RD, Dyck PJ, Mantyh P, et al. The Paclitaxel acute pain syndrome: sensitization of nociceptors as the putative mechanism. Cancer J 2007; 13: 399-403. https://doi.org/10.1097/ppo.0b013e31815a999b
- Janes K, Wahlman C, Little JW, Doyle T, Tosh DK, Jacobson KA, et al. Spinal neuroimmune activation is independent of T-cell infiltration and attenuated by A3 adenosine receptor agonists in a model of oxaliplatin-induced peripheral neuropathy. Brain Behav Immun 2015; 44: 91-9. https://doi.org/10.1016/j.bbi.2014.08.010
- Peters CM, Jimenez-Andrade JM, Jonas BM, Sevcik MA, Koewler NJ, Ghilardi JR, et al. Intravenous paclitaxel administration in the rat induces a peripheral sensory neuropathy characterized by macrophage infiltration and injury to sensory neurons and their supporting cells. Exp Neurol 2007; 203: 42-54. https://doi.org/10.1016/j.expneurol.2006.07.022
- Liu CC, Lu N, Cui Y, Yang T, Zhao ZQ, Xin WJ, et al. Prevention of paclitaxel-induced allodynia by minocycline: effect on loss of peripheral nerve fibers and infiltration of macrophages in rats. Mol Pain 2010; 6: 76. https://doi.org/10.1186/1744-8069-6-76
- Narumiya S, Ogorochi T, Nakao K, Hayaishi O. Prostaglandin D2 in rat brain, spinal cord and pituitary: basal level and regional distribution. Life Sci 1982; 31: 2093-103. https://doi.org/10.1016/0024-3205(82)90101-1
- Ogorochi T, Narumiya S, Mizuno N, Yamashita K, Miyazaki H, Hayaishi O. Regional distribution of prostaglandins D2, E2, and F2 alpha and related enzymes in postmortem human brain. J Neurochem 1984; 43: 71-82. https://doi.org/10.1111/j.1471-4159.1984.tb06680.x
- Joo M, Sadikot RT. PGD synthase and PGD2 in immune resposne. Mediators Inflamm 2012; 2012: 503128.
- Jang Y, Kim M, Hwang SW. Molecular mechanisms underlying the actions of arachidonic acid-derived prostaglandins on peripheral nociception. J Neuroinflammation 2020; 17: 30. https://doi.org/10.1186/s12974-020-1703-1
- Vanegas H, Schaible HG. Prostaglandins and cyclooxygenases [correction of cycloxygenases] in the spinal cord. Prog Neurobiol 2001; 64: 327-63. https://doi.org/10.1016/S0301-0082(00)00063-0
- Grill M, Peskar BA, Schuligoi R, Amann R. Systemic inflammation induces COX-2 mediated prostaglandin D2 biosynthesis in mice spinal cord. Neuropharmacology 2006; 50: 165-73. https://doi.org/10.1016/j.neuropharm.2005.08.005
- Kanda H, Kobayashi K, Yamanaka H, Noguchi K. COX-1-dependent prostaglandin D2 in microglia contributes to neuropathic pain via DP2 receptor in spinal neurons. Glia 2013; 61: 943-56. https://doi.org/10.1002/glia.22487
- Koh GH, Song H, Kim SH, Yoon MH, Lim KJ, Oh SH, et al. Effect of sec-O-glucosylhamaudol on mechanical allodynia in a rat model of postoperative pain. Korean J Pain 2019; 32: 87-96. https://doi.org/10.3344/kjp.2019.32.2.87
- Lin H, Heo BH, Yoon MH. A new rat model of cisplatin-induced neuropathic pain. Korean J Pain 2015; 28: 236-43. https://doi.org/10.3344/kjp.2015.28.4.236
- Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 1994; 53: 55-63. https://doi.org/10.1016/0165-0270(94)90144-9
- Ujihara M, Urade Y, Eguchi N, Hayashi H, Ikai K, Hayaishi O. Prostaglandin D2 formation and characterization of its synthetases in various tissues of adult rats. Arch Biochem Biophys 1988; 260: 521-31. https://doi.org/10.1016/0003-9861(88)90477-8
- Matsuoka T, Hirata M, Tanaka H, Takahashi Y, Murata T, Kabashima K, et al. Prostaglandin D2 as a mediator of allergic asthma. Science 2000; 287: 2013-7. https://doi.org/10.1126/science.287.5460.2013
- Santus P, Radovanovic D. Prostaglandin D2 receptor antagonists in early development as potential therapeutic options for asthma. Expert Opin Investig Drugs 2016; 25: 1083-92. https://doi.org/10.1080/13543784.2016.1212838
- Saunders R, Kaul H, Berair R, Gonem S, Singapuri A, Sutcliffe AJ, et al. DP2 antagonism reduces airway smooth muscle mass in asthma by decreasing eosinophilia and myofibroblast recruitment. Sci Transl Med 2019; 11: eaao6451. https://doi.org/10.1126/scitranslmed.aao6451
- Gonem S, Berair R, Singapuri A, Hartley R, Laurencin MFM, Bacher G, et al. Fevipiprant, a prostaglandin D2 receptor 2 antagonist, in patients with persistent eosinophilic asthma: a single-centre, randomised, double-blind, parallel-group, placebo-controlled trial. Lancet Respir Med 2016; 4: 699-707. https://doi.org/10.1016/S2213-2600(16)30179-5
- Hirata M, Kakizuka A, Aizawa M, Ushikubi F, Narumiya S. Molecular characterization of a mouse prostaglandin D receptor and functional expression of the cloned gene. Proc Natl Acad Sci U S A 1994; 91: 11192-6. https://doi.org/10.1073/pnas.91.23.11192
- Minami T, Uda R, Horiguchi S, Ito S, Hyodo M, Hayaishi O. Allodynia evoked by intrathecal administration of prostaglandin E2 to conscious mice. Pain 1994; 57: 217-23. https://doi.org/10.1016/0304-3959(94)90226-7
- Willingale HL, Gardiner NJ, McLymont N, Giblett S, Grubb BD. Prostanoids synthesized by cyclo-oxygenase isoforms in rat spinal cord and their contribution to the development of neuronal hyperexcitability. Br J Pharmacol 1997; 122: 1593-604. https://doi.org/10.1038/sj.bjp.0701548
- Schuligoi R, Ulcar R, Peskar BA, Amann R. Effect of endotoxin treatment on the expression of cyclooxygenase-2 and prostaglandin synthases in spinal cord, dorsal root ganglia, and skin of rats. Neuroscience 2003; 116: 1043-52. https://doi.org/10.1016/S0306-4522(02)00783-2
- Yoon SY, Robinson CR, Zhang H, Dougherty PM. Spinal astrocyte gap junctions contribute to oxaliplatin-induced mechanical hypersensitivity. J Pain 2013; 14: 205-14. https://doi.org/10.1016/j.jpain.2012.11.002
- Di Cesare Mannelli L, Pacini A, Bonaccini L, Zanardelli M, Mello T, Ghelardini C. Morphologic features and glial activation in rat oxaliplatin-dependent neuropathic pain. J Pain 2013; 14: 1585-600. https://doi.org/10.1016/j.jpain.2013.08.002
- Watkins LR, Milligan ED, Maier SF. Glial proinflammatory cytokines mediate exaggerated pain states: implications for clinical pain. Adv Exp Med Biol 2003; 521: 1-21.
- Grill M, Heinemann A, Hoefler G, Peskar BA, Schuligoi R. Effect of endotoxin treatment on the expression and localization of spinal cyclooxygenase, prostaglandin synthases, and PGD2 receptors. J Neurochem 2008; 104: 1345-57. https://doi.org/10.1111/j.1471-4159.2007.05078.x
- Lynch JJ 3rd, Wade CL, Zhong CM, Mikusa JP, Honore P. Attenuation of mechanical allodynia by clinically utilized drugs in a rat chemotherapy-induced neuropathic pain model. Pain 2004; 110: 56-63. https://doi.org/10.1016/j.pain.2004.03.010
- Bujalska M, Gumulka SW. Effect of cyclooxygenase and nitric oxide synthase inhibitors on vincristine induced hyperalgesia in rats. Pharmacol Rep 2008; 60: 735-41.