DOI QR코드

DOI QR Code

Virulence factors and multi-drug resistant patterns of pathogenic Escherichia coli isolates from diarrheic calves in Jeonbuk

전북지역 송아지 설사 유래 병원성 대장균의 병원성 인자 및 다제 내성 패턴

  • Kwak, Kil-Han (Animal Health Institute of Jellabukdo) ;
  • Kim, Seon-Min (Department of Veterinary Public Health, College of Veterinary Medicinee, Jeonbuk National University) ;
  • Yu, Yeong-Ju (Department of Veterinary Public Health, College of Veterinary Medicinee, Jeonbuk National University) ;
  • Yu, Jeong-Hee (Department of Veterinary Public Health, College of Veterinary Medicinee, Jeonbuk National University) ;
  • Lim, Mi-Na (Animal Health Institute of Jellabukdo) ;
  • Jang, Yu-Jeong (Animal Health Institute of Jellabukdo) ;
  • Hur, Jin (Department of Veterinary Public Health, College of Veterinary Medicinee, Jeonbuk National University)
  • 곽길한 (전라북도 동물위생시험소 서부지소) ;
  • 김선민 (전북대학교 수의과대학 수의공중보건학실) ;
  • 유영주 (전북대학교 수의과대학 수의공중보건학실) ;
  • 유정희 (전북대학교 수의과대학 수의공중보건학실) ;
  • 임미나 (전라북도 동물위생시험소 서부지소) ;
  • 장유정 (전라북도 동물위생시험소 서부지소) ;
  • 허진 (전북대학교 수의과대학 수의공중보건학실)
  • Received : 2021.12.17
  • Accepted : 2021.12.24
  • Published : 2021.12.30

Abstract

Pathogenic Escherichia coli (E. coli) is one among the most important agents of diarrhea in calves. From January to December 2021, 108 isolates from feces of calves with diarrhea were investigated for enterotoxigenic E. coli (ETEC), enteropathogenic E. coli (EPEC), shiga toxin-producing E. coli (STEC), enteroaggregative E. coli (EAEC), and enteroinvasive E. coli (EIEC) using real-time PCR. In addition, the genes for F5, F17 and F41 fimbriae were detected by PCR. The most frequently isolated pathotypes were EPEC/STEC (29 isolates), and ETEC/EPEC/STEC (29 isolates). ETEC/EPEC, and ETEC/STEC were also found in 10 isolates. EPEC, STEC, and ETEC were detected in 13, 11, and 6 respectively. EAEC, and EIEC was not detected. Antimicrobial resistance test was carried out by agar disc diffusion method with 14 antimicrobials. Among 108 pathogenic E. coli isolates, 107 isolates were resistant to at least one of 14 antibiotics used in this study, 99 (91.7%) were resistant to two or more antimicrobials, and a single remarkable isolate was resistant to 14 antimicrobials. The isolates were primarily resistant to penicillins, streptomycin, tetracycline, ceftiofur, Trimethoprim/sulfamethoxazole, Kanamycin, and Ciprofloxacin. The high rate of resistance in pathogenic E. coli, sometimes to multiple drugs, may complicate future options for treating human infections. These results may bu used for diagnosis and therpeitic purposes in calves with diarrhea.

Keywords

Acknowledgement

이 논문은 정부의 재원으로 농림식품기술기획평가원(Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry, IPET)(No. 320070-2)과 전라북도 동물위생시험소 서부지소의 지원을 받아 연구되었습니다.

References

  1. Armstrong GL, Hollingsworth J, Morris JG Jr. 1996. Emerging foodborne pathogens: Escherichia coli O157:H7 as a model of entry of a new pathogen into the food supply of the developed world. Epidemiol Rev 18(1): 29-51. https://doi.org/10.1093/oxfordjournals.epirev.a017914
  2. Arya G, Roy A, Choudhary V, Yadav MM, Joshi CG. 2008. Serogroups, atypical biochemical characters, colicinogeny and antibiotic resistance pattern of Shiga toxin-producing Escherichia coli isolated from diarrhoeic calves in Gujarat, India. Zoonoses Public Health 55(2): 89-98. https://doi.org/10.1111/j.1863-2378.2007.01093.x
  3. Boerlin P, McEwen SA, Boerlin-Petzold F, Wilson JB, Johnson RP, Gyles CL. 1999. Associations between virulence factors of Shiga toxin-producing Escherichia coli and disease in humans. J Clin Microbiol 37(3): 497-503. https://doi.org/10.1128/JCM.37.3.497-503.1999
  4. Chae HS, Kim NH, Han HJ, Son HR, Kim CK, Kim SH, Lee JH, Kim JT. 2009. Characterization and isolation of shiga toxin-producing Escherichia coli from Bovine feces and Carcass. Korean J Vet Serv 32(3): 241-249.
  5. Clinical and Laboratory Standards Institute (CLSI). 2008. pp. CLSI informational Supplrment M31-A3. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals; approved standard. 3rd ed. Clinical and Laboratory Standards Institute. Wayne, Pennsylvania.
  6. Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB. 2013. Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev 26(4): 822-880. https://doi.org/10.1128/CMR.00022-13
  7. Dean-Nystrom EA, Bosworth BT, Cray WC Jr, Moon HW. 1997. Pathogenicity of Escherichia coli O157:H7 in the intestines of neonatal calves. Infect Immun 65(5): 1842-1848. https://doi.org/10.1128/iai.65.5.1842-1848.1997
  8. Do KH, Byun JW, Lee WK. 2017. Antimicrobial resistance of Stx2e positive Escherichia coli before and after ban on antibiotic growth promoters. J Biomed Transl Res 18(3): 84-92. https://doi.org/10.12729/jbtr.2017.18.3.084
  9. Fakih I, Thiry D, Duprez JN, Saulmont M, Iguchi A, Pierard D, Jouant L, Daube G, Ogura Y, Hayashi T, TAMINIAU b, mAINIL j. 2017. Identification of Shiga toxin-producing (STEC) and enteropathogenic (EPEC) Escherichia coli in diarrhoeic calves and comparative genomics of O5 bovine and human STEC. Vet Microbiol 202: 16-22. https://doi.org/10.1016/j.vetmic.2016.02.017
  10. Franck SM, Bosworth BT, Moon HW. 1998. Multiplex PCR for enterotoxigenic, attaching and effacing, and Shiga toxin-producing Escherichia coli strains from calves. J Clin Microbiol 36(6): 1795-1797. https://doi.org/10.1128/JCM.36.6.1795-1797.1998
  11. Fremaux B, Raynaud S, Beutin L, Rozand CV. 2006. Dissemination and persistence of Shiga toxin-producing Escherichia coli (STEC) strains on French dairy farms. Vet Microbiol 117(2-4): 180-191. https://doi.org/10.1016/j.vetmic.2006.04.030
  12. Griffin PM, Tauxe RV. 1991. The epidemiology of infections caused by Escherichia coli O157:H7, other enterohemorrhagic E. coli, and the associated hemolytic uremic syndrome. Epidemiol Rev 13: 60-98. https://doi.org/10.1093/oxfordjournals.epirev.a036079
  13. Guler L, Gunduz K, Ok U. 2008. Virulence factors and antimicrobial susceptibility of Escherichia coli isolated from calves in Turkey. Zoonoses Public Health 55(5): 249-257. https://doi.org/10.1111/j.1863-2378.2008.01121.x
  14. Han SM, Hong IP, Woo SO, Kim SG, Jang HR. 2015. Analysis of bee venom residues in milks of dairy cattle using UHPLC with newly developed pre-processing method. Korean J Vet Serv 38(1): 25-30. https://doi.org/10.7853/KJVS.2015.38.1.25
  15. Han SM, Kim JM, Yeo JH, Hong IP, Woo SO, Lee KG, Kweon HY. 2014. Origin and effective ingredient standards of honeybee venom as natural antibiotic ingredients. Korean J Vet Serv 37(2): 123-129. https://doi.org/10.7853/KJVS.2014.37.2.123
  16. Hays VW, Muir WM. 1979. Efficiency and safety of feed additive use of antibacterial drugs in animal production. Can J Anim Sci 59: 447-456. https://doi.org/10.4141/cjas79-055
  17. Hornitzky MA, Mercieca K, Bettelheim KA, Djordjevic SP. 2005. Bovine feces from animals with gastrointestinal infections are a source of serologically diverse atypical enteropathogenic Escherichia coli and Shiga toxinproducing E. coli strains that commonly possess intimin. Appl Environ Microbiol 71(7): 3405-3412. https://doi.org/10.1128/AEM.71.7.3405-3412.2005
  18. Hur J, Jeon BW, Kim YJ, Oh IG, Lee JH. 2013. Escherichia coli isolates from calf diarrhea in Korea and their virulent genetic characteristics. J Vet Med Sci 75(4): 519-522. https://doi.org/10.1292/jvms.12-0378
  19. Jeong H, Baek KJ, Koh WS, Lee JW, Jeong JK. 2020. Prevalence of enterovirulent Escherichia coli from diarrhea of cattles in Jeonbuk, Korea. Korean J Vet Serv 43(2): 53-58. https://doi.org/10.7853/KJVS.2020.43.2.53
  20. Kaper JB. 1996. Defining EPEC. In: Proceedings of the international symposium on enteropathogenic Escherichia coli (EPEC). Rev Microbiol 27: 130-133.
  21. Kim ST, Kim S, Kim SY, Son JK. 1997. Comparison of fatty acid composition of Staphylococcus sp. isolated from bovine mastitis milk. Korean J Vet Serv 20(1): 37-45.
  22. Kolenda R, Burdukiewicz M, Schierack P. 2015. A systematic review and metaanalysis of the epidemiology of pathogenic Escherichia coli of calves and the role of calves as reservoirs for human pathogenic E. coli. Front Cell Infect Microbiol. 5: 23. https://doi.org/10.3389/fcimb.2015.00023
  23. Le Bouguenec C, Bertin Y. 1999. AFA and F17 adhesins produced by pathogenic Escherichia coli strains in domestic animals. Vet Res 30: 317-342.
  24. Lee JH, Hur J, Stein BD. 2008. Occurrence and characteristics of enterohemorrhagic Escherichia coli O26 and O111 in calves associated with diarrhea. Vet J 176(2): 205-209. https://doi.org/10.1016/j.tvjl.2007.02.007
  25. Lim SK, Byun JR, Lee HS, Moon DC, Jang GC, Jung SC. 2014. Antimicrobial resistance of Escherichia coli strains isolated from pigs and their farm environment in Korea. J Prev Vet Med 38(3): 61-68. https://doi.org/10.13041/jpvm.2014.38.3.61
  26. Lorenz I, Fagan J, More SJ. 2011. Calf health from birth to weaning. II. Management of diarrhoea in pre-weaned calves. Ir Vet J 64(1): 9. https://doi.org/10.1186/2046-0481-64-9
  27. Moon HW, Hoffman LJ, Cornick NA, Booher SL, Bosworth BT. 1999. Prevalences of some virulence genes among Escherichia coli isolates from swine presented to a diagnostic laboratory in Iowa. J Vet Diagn Invest 11 (6): 557-560. https://doi.org/10.1177/104063879901100617
  28. Nagy B, Fekete PZ. 1999. Enterotoxigenic Escherichia coli (ETEC) in farm animals. Vet Res 30: 259-284.
  29. Nataro JP, Kaper JB. 1998. Diarrheagenic Escherichia coli. Clin Microbiol Rev 11: 142-201. https://doi.org/10.1128/cmr.11.1.142
  30. Nguyen TD, Thanh T, Vu-Khac H. 2011. Virulence factors in Escherichia coli isolated from calves with diarrhea in Vietnam. J Vet Sci 12(2): 159-164. https://doi.org/10.4142/jvs.2011.12.2.159
  31. Okhuysen PC, Dupont HL. 2010. Enteroaggregative Escherichia coli (EAEC): a cause of acute and persistent diarrhea of worldwide importance. J Infect Dis 202: 503-505. https://doi.org/10.1086/654895
  32. Orden JA, Ruiz-Santa-Quiteria JA, Cid D, Garcia S, Sanz R, de la Fuente R. 1998. Verotoxin-producing Escherichia coli (VTEC) and eae-positive non-VTEC in 1-30-days-old diarrhoeic dairy calves. Vet Microbiol 63(2-4): 239-248. https://doi.org/10.1016/S0378-1135(98)00218-1
  33. Osek J, Gallien P, Protz D. 2000. Characterization of Shiga toxin-producing Escherichia coli strains isolated from calves in Poland. Comp Immunol Microbiol Infect Dis 23(4): 267-276. https://doi.org/10.1016/S0147-9571(00)00008-4
  34. Ryu JH, Kim SH, Park JH, Choi KS. 2020. Characterization of virulence genes in Escherichia coli strains isolated from pre-weaned calves in the Republic of Korea. Acta Vet Scand 62: 45. https://doi.org/10.1186/s13028-020-00543-1
  35. Salvadori MR, Valadares GF, Leite DS, Blanco J, Yano T.2003. Virulence factors of Escherichia coli isolated from calves with diarrhea in Brazil. Braz J Microbiol 34(3): 230-235. https://doi.org/10.1590/S1517-83822003000300009
  36. Sandhu KS, Gyles CL. 2002. Pathogenic Shiga toxin-producing Escherichia coli in the intestine of calves. Can J Vet Res 66(2): 65-72.
  37. Sethabutr O, Venkatesan M, Yam S, Pang LW, Smoak BL, Sang WK, Echeverria P, Taylor DN, Isenbarger DW. 2000. Detection of PCR products of the ipaH gene from Shigella and enteroinvasive Escherichia coli by enzyme linked immunosorbent assay. Diagn Microbiol Infect Dis 37(1): 11-16. https://doi.org/10.1016/S0732-8893(00)00122-X
  38. Shimizu M, Sakano T, Yamamoto J, Kitajima K. 1987. Incidence and some characteristics of fimbriae FY and 31A of Escherichia coli isolates from calves with diarrhea in Japan. Microbiol Immunol 31(5): 417-426. https://doi.org/10.1111/j.1348-0421.1987.tb03104.x
  39. Toledo A, Gomez D, Cruz C, Carreon R, Lopez J, Giono S, Castro AM. 2012. Prevalence of virulence genes in Escherichia coli strains isolated from piglets in the suckling and weaning period in Mexico. J Med Microbiol 61(1): 148-156. https://doi.org/10.1099/jmm.0.031302-0
  40. Van Bost S, Babe MH, Jacquemin E, Mainil J. 2001. Characteristics of necrotoxigenic Escherichia coli isolated from septicemic and diarrheic calves between 1958 and 1970. Vet Microbiol 82(4): 311-320. https://doi.org/10.1016/S0378-1135(01)00395-9
  41. Vu-Khac H, Cornick NA. 2008. Prevalence and genetic profiles of Shiga toxin producing Escherichia coli strains isolated from buffaloes, cattle, and goats in central Vietnam. Vet Microbiol 126(4): 356-363. https://doi.org/10.1016/j.vetmic.2007.07.023
  42. Vu-Khac H, Holoda E, Pilipcinec E, Blanco M, Blanco JE, Dahbi G, Mora A, Lopez C, Gonzalez EA, Blanco J. 2007. Serotypes, virulence genes, intimin types and PFGE profiles of Escherichia coli isolated from piglets with diarrhoea in Slovakia. Vet J174(1): 176-187.
  43. WHO Advisory Group on Integrated Surveillance of Antimicrobial Resistance (AGISAR). 2019. Interpretation of categorization. pp. 13-40. Critically Important Antimicrobials for Human Medicine: Ranking of medically important antimicrobials for risk management of antimicrobial resistance due to non-human use. 6th Revision. World Health Organization, Geneva.
  44. Wieler LH, Vieler E, Erpenstein C, Schlapp T, Steinruck H, Bauerfeind R, Byomi A, Baljer G. 1996. Shiga toxin-producing Escherichia coli strains from bovines: association of adhesion with carriage of eae and other genes. J Clin Microbiol 34(12): 2980-2984. https://doi.org/10.1128/jcm.34.12.2980-2984.1996