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Abstract

Dynamic route guidance (DRG) finds the fastest path from a source to a destination location considering the 

real-time congestion information. In Korea, the traffic state information is available by the public transportation 

data (PTD) which is indexed on top of the node-link map (NLM). While the NLM is the authoritative low-detailed 

road network for major roads only, the OpenStreetMap road network (ORN) supports not only a high-detailed road 

network but also a few open-source routing engines, such as OSRM and Valhalla. In this paper, we propose a DRG 

framework based on road network matching between the NLM and ORN. This framework regularly retrieves the 

NLM-indexed PTD to construct a historical speed profile which is then mapped to ORN. Next, we extend the 

Valhalla routing engine to support dynamic routing based on the historical speed profile. The numerical results at 

the Yeoui-do island with collected 11-month PTD show that our DRG framework reduces the travel time up to 

15.24 % and improves the estimation accuracy of travel time more than 5 times.
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Ⅰ. Introduction

Dynamic route guidance (DRG) is an emerging

new intelligent transportation systems (ITS)

application. The DRG provides the fastest path

from a source to a destination location. Contrary

to the static route guidance, the DRG requires

real-time traffic state information for each road,

such as the average speed of vehicles. Therefore,

the availability of traffic state information is the

key factor of DRG.

In Korea, the traffic state information is periodically

updated through public transportation data (PTD)

[1]. The road of PTD indexed by the node-link

map (NLM), the authoritative road network for

exchanging ITS information in Korea [2]. However,

the NLM represents the road objects and their

interconnectivity for major roads only. Moreover,

there is no open-source software packages that

supports many ITS applications, such as automotive

navigation and autonomous driving. Therefore,

the NLM itself is not suitable for the DRG.

Openstreetmap (OSM) is a collaborative project

to create a free editable geographic information

system (GIS) [3]. The OSM road network (ORN)

represents the detailed geometry of all street and
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road networks. Furthermore, there are a few routing

engines operating on top of ORN, such as OSRM

and Valhalla [4]. However, there is no infrastructure

to provide real-time traffic state information in

ORN.

Taking into account the above limitations, we

propose a DRG framework that integrates the

NLM-indexed PTD and the extended open-source

routing engine via road network matching (RNM)

between NLM and ORN [5]. The RNM is a solution

to data association problem between two road

networks, where a set of road objects in one

road network is mapped into another set of road

objects in the other road network. Based on the

PTD collected every five minutes over 11 months,

the numerical results show that the proposed

DRG reduces the travel time up to 15.24 % and

improves the estimation accuracy of travel time

more than 5 times. To the best of our knowledge,

this is the first work to provide the DRG by

integrating RNM, PTD, and an open-source route

setting engine in a Korean road environment.

The rest of this paper is organized as follows.

In section 2, we present our DRG framework. Then,

the numerical results of our DRG framework are

discussed in section 3. Finally, we conclude this

paper in section 4.

Ⅱ. DRG Framework

Fig. 1 shows the block diagram of the DRG

framework consisting of three layers. The traffic

state processing layer consists of the PTD

crawler and historical speed profile generator to

retrieve and generate time- dependent historical

speed profile of each road. The RNM adaptation

layer is composed of index conversion and ORN

extension blocks. The former converts the

NLM-indexed PTD to ORN-indexed speed profile

using the RNM, whereas the latter provides the

detailed information to precisely match road objects.

Since the OSRM supports a static routing only,

the dynamic routing layer extends the Valhalla

routing engine so that it can support time-

dependent cost metric. The road network and

speed file generators creates graph topology and

the cost metric of the Vahalla engine.

Fig. 1. Block diagram of DRG framework.

2.1 PTD Processing

In Korea, the National Transportation Information

Center (NTIC) collects all ITS information about

traffic, construction, incidents, and CCTV information

and open this information to the public via

representational state transfer (REST) APIs [1].

To enable the DRG, we focus on the public

traffic information which includes the road speed

which is updated every 5 minutes.

To obtain this speed data, our PTD crawler

periodically queries the speed profile request to

NTIC. The request period is set as 2.5 minutes

which is half of the traffic information update

period to make sure that no information is

missed. The traffic information of a link contains

the roadsectionid, avgspeed, and generatedate

which are its NLM index, average speed, and the

generation date, respectively.

The DRG needs the speed data of all the roads

in the current and near-future time points. We

crawled the speed profile of all roads in Yeoui-do

island over 11 months which is called the historical

speed profile. Since the speed profile shows

different pattern depending on time-of-day and

day-of-week, the historical speed profile is

created to capture these patterns. The collected
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PTD is categorized by the timeslot of a week

(TSoW) of generatedate. The duration of timeslot

is selected to the updated period of PTD, i.e. 5

minutes. As a result, there are 2,016 TSoWs,

where TSoW 0 starts at 12:00 AM on Sunday.

Fig. 2. LoD difference (left), and missing correspondents 

(right) between NLM (purple) and ORN (green).

2.2 RNM Adaptation

Both road networks, i.e. NLM and ORN, show a

significant dissimilarity in terms of the representational

level of details (LoD) of a complex intersection,

and missing corresponding objects as shown in

Fig. 2. Our RNM approach [5] can successfully

group a complex ORN intersection to a supernode

that can address the LoD difference. The missing

correspondents is resolved by inserting a new

subgraph to ORN.

An RNM solution generates the mapping between

NLM links and OSM edges. Using this mapping,

the NLM-indexed PTD can be converted to OSM-

indexed speed profile. Only a few geographical

and topological NLM node attributes are sufficient

to fill out the attribute of new ORN nodes

generated to address the missing correspondents.

Similarly, the attributes of a new ORN edge can

be filled out by using the rule in [6].

2.3 Dynamic Routing

In this section, we extend the Valhalla routing

engine to support the DRG. Valhalla is a low-memory

routing engine that divides the road network into

a tile hierarchy. Valhalla uses the   algorithm,

a heuristic least-cost path algorithm with low

computational complexity [7]. We first convert

the ORN and the historical speed profile to the

input of Valhalla. Then, we modify the   algorithm

to support time-dependent cost metric.

2.3.1 Road Network File Generator

The first input of Valhalla is the information

about road network. Valhalla converts the ORN

to its own graph representation     .

Next, this graph is then divided into tile files

depending on its geospatial location.

The second input of Valhalla is the speed

profile of each ORN edge. The original Valhalla

also has a functionality to convert the speed

information of ORN edge into Vahalla cost metric.

To support 2,016 TSoW speeds for each edge,

we modify the speed file generator so that it can

periodically overwrite the Vahalla speed file.

2.3.2 Dynamic Routing Engine

Given the road network file and speed file, we

extend the   algorithm of Vahalla to support

DRG. In this section, we first describe the original

Valhalla, and ttwo DRG approaches called snapshot

and time-dependent.

The   algorithm finds the shortest path by

greedily expanding the set of traversed nodes

based on the low-bound estimation of sub-path

to the destination as shown in Algorithm 1. The

cost of low-bound estimation of sub-path is

represented by the function  at line 11, in

which   is the fastest travel time from the

heuristic function that estimates the lower-bound

cost from  to the destination. In Valhalla, 

is computed as the travel time over the Euclidean

distance from the intermediate node () to the

destination node () with the maximum speed of

road network.

In the original   algorithm, for a given source

node and node  ,  are constant. However, if

the vehicle speed on each edge changes according

to TSoW, function  should also change

accordingly. To obtain the correct speed profile

in multiple TSoW cost metrics, the departure
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Input: node set  , edge cost function  , 

heuristic function , source node  , destination 

node .

Output: shortest path from  to 

1. Set 
  ∞ and 

  ∞ ∀∈


2. Add  to open set 

3. Set 
  ∅ 

   
  



4. while  ≠∅

5.   Get ∈ with lowest 


6.   if 
 , reconstruct path with  and 

return

7.   for each neighbor  of 

8.     if 
  

 
  



9.        Set 
  

10.       Set 
  

  
 



11.       Set 
  




12.       if  ∉, add  to 

Algorithm 1.   algorithm.

time  at source node is used to compute the

shortest path to the destination [8]. Particularly,

given departure time , function  at line 10

is computed as follows:

     (1)

where  is the cost of the edge between

 and  at time .  is a snapshot of the

historical speed profile at the TSoW interval

which departure time  belongs to. We call this

approach the snapshot scheme.

The time-dependent scheme considers the fact

that TSoW can change during the travel to the

destination. To address this change, function

 can be calculated as follows:

     (2)

Notice that the start time at each ORN edge

depends on the travel time of all previous ORN

edges along the path. To address this issue, we

simulate the TSoW change at each edge as

suggested in [8]. Algorithm 2 shows the algorithm

to calculate the edge travel time. The idea is

sequentially computing the travel distance  in

TSoWs until the vehicle leaves the edge based

on the constant-speed model. This edge travel

time is used to compute the equation in (2).

Input: edge length , TSoW speed 

Output: edge travel time 

1. Set   



 and   

1. while  

1.   Set   

1.   Set    

1. Set 





    
 




Algorithm 2. Edge travel time algorithm.

Traffic Condition Day of Week Time of Days

Free flow All days of week 2:00-5:00

Changing Weekdays 20:00-22:00

Congestion Weekdays 17:00-20:00

Peak Friday 18:30-19:00

Table 1. Departing time interval.

Ⅲ. Numerical Results

We investigate the performance of three routing

schemes at Yeoui-do island, Korea’s autonomous

vehicle testing site. It covers an area of 3.5 km

X 2.8 km. The traffic data is collected from July

2017 to June 2018. The first 80 % of collected

data is used for the generation of historical speed

profile, and the rest for the test scenario.

We compare the performance of three routing

schemes: (1) original Valhalla, (2) snapshot, and

(3) time-dependent scheme. We generate 1,000

routing requests each of which has a random

source and destination node, and a random

request time. For each request, the Euclidean

distance between source and destination node is

at least 2 Km. To observe the impact of traffic

state, we choose four TSoW intervals with

different traffic conditions as shown in Table 1.

Fig. 3 shows the average travel time of four

TSoWs. As the traffic becomes more congested,

the travel time increases. Two DRG schemes

always have a smaller travel time than the
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original Valhalla scheme. Especially, the gap

between DRG and static routing becomes higher

with the level of traffic congestion. The time-

dependent scheme improves the travel time up to

15.24 % compared to the original Valhalla scheme.

On the other hand, there is no clear difference

between snapshot and time-dependent scheme.

From this result, we conclude that the key

difference comes from the ability to adapt to a

longer time scale change of traffic congestion,

rather than a short time scale traffic change.

Fig. 3. Average travel time.

Fig. 4 shows the RMSE of vehicle travel time

in four traffic conditions. We observe that the

DRG schemes can accurately estimate the travel

time, at least 5 times better than the original

Vahalla scheme. This is because the original

Valhalla uses a constant speed metric regardless

of traffic situation: as a result, its RMSE increases

as road traffic becomes more congested.

Ⅳ. Conclusion

In this paper, we present the DRG framework

based on the RNM between NLM and ORN. The

collected NLM-indexed PTD are aggregated to

historical speed profile, and then converted to

ORN cost metric. The Valhalla routing engine is

extended to support the snapshot and time-

dependent   algorithm. The result at Yeoui-do

island shows that the travel time of DRG scheme

is improved up to 15.24 %, and the estimation

accuracy of travel time is improved at least 5

times of the original Valhalla scheme.

Fig. 4. RMSE of travel time.
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