DOI QR코드

DOI QR Code

Measurement of the Thermal Conductivity of a Polycrystalline Diamond Thin Film via Light Source Thermal Analysis

  • Kim, Hojun (Department of Materials Science and Engineering, University of Seoul) ;
  • Kim, Daeyoon (Department of Materials Science and Engineering, University of Seoul) ;
  • Lee, Nagyeong (Department of Materials Science and Engineering, University of Seoul) ;
  • Lee, Yurim (Department of Materials Science and Engineering, University of Seoul) ;
  • Kim, Kwangbae (Department of Materials Science and Engineering, University of Seoul) ;
  • Song, Ohsung (Department of Materials Science and Engineering, University of Seoul)
  • Received : 2021.10.27
  • Accepted : 2021.11.22
  • Published : 2021.12.27

Abstract

A 1.8 ㎛ thick polycrystalline diamond (PCD) thin film layer is prepared on a Si(100) substrate using hot-filament chemical vapor deposition. Thereafter, its thermal conductivity is measured using the conventional laser flash analysis (LFA) method, a LaserPIT-M2 instrument, and the newly proposed light source thermal analysis (LSTA) method. The LSTA method measures the thermal conductivity of the prepared PCD thin film layer using an ultraviolet (UV) lamp with a wavelength of 395 nm as the heat source and a thermocouple installed at a specific distance. In addition, the microstructure and quality of the prepared PCD thin films are evaluated using an optical microscope, a field emission scanning electron microscope, and a micro-Raman spectroscope. The LFA, LaserPIT-M2, and LSTA determine the thermal conductivities of the PCD thin films, which are 1.7, 1430, and 213.43 W/(m·K), respectively, indicating that the LFA method and LaserPIT-M2 are prone to errors. Considering the grain size of PCD, we conclude that the LSTA method is the most reliable one for determining the thermal conductivity of the fabricated PCD thin film layers. Therefore, the proposed LSTA method presents significant potential for the accurate and reliable measurement of the thermal conductivity of PCD thin films.

Keywords

Acknowledgement

This research was supported by X-mind Corps program of National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT (NRF-2017H1D8A1030582).

References

  1. A. Almubarak, Int. J. Eng. Res. Appl., 7, 52 (2017).
  2. X. Liu and Z. Rao, Thermochim. Acta, 647, 15 (2017). https://doi.org/10.1016/j.tca.2016.11.010
  3. J. Carvill, Mechanical Engineer's Data Handbook, p.131, Butterworth-Heinemann, Oxford, UK (1994).
  4. I. Yeo, I. Kang, J. Korean Powder Metall. Inst., 22, 21 (2015). https://doi.org/10.4150/KPMI.2015.22.1.21
  5. S. Park, S. Im, H. Kim, J. Noh, S. Huh, J. Korean Soc. Ind. Convergence, 22, 767 (2019). https://doi.org/10.21289/KSIC.2019.22.6.767
  6. Y. Zhou, R. Ramaneti, J. Anaya, S. Korneychuk, J. Derluyn, H. Sun, J. Pomeroy, J. Verbeeck, K. Haenen and M. Kuball, Appl. Phys. Lett., 111, 041901 (2017). https://doi.org/10.1063/1.4995407
  7. H. Wang and M. Sen, Int. J. Heat Mass Tran., 52, 2102 (2009). https://doi.org/10.1016/j.ijheatmasstransfer.2008.10.020
  8. X. Tan, T. Jang, J. Kwon, and T. Kim, J. Korean Inst. Surf. Eng., 53, 109 (2020). https://doi.org/10.5695/JKISE.2020.53.3.109
  9. M. Bae, C. Kim, Y. Park, S. Yoon and T. Kim, Mod. Phys. Lett. B, 34, 2040045 (2020). https://doi.org/10.1142/s021798492040045x
  10. S. Jin, Q. Gao, X. Zeng, R. Zhang, K. Liu, X. Shao and M. Jin, Diamond Relat. Mater., 58, 54 (2015). https://doi.org/10.1016/j.diamond.2015.06.005
  11. E. Lopez-Baeza, J. D. L. Rubia and H. J. Goldsmid, J. Phys. D: Appl. Phys., 20, 1156 (1987). https://doi.org/10.1088/0022-3727/20/9/011
  12. R. Kato, A. Maesono and R. P. Tye, Int. J. Thermophys., 22, 617 (2001). https://doi.org/10.1023/A:1010745603645
  13. X. Li, Y. Yan, L. Dong, J. Guo, A. Aiyiti, X. Xu and B. Li, J. Phys. D: Appl. Phys., 50, 104002 (2017). https://doi.org/10.1088/0022-3727/50/10/104002
  14. A. Karczemska, M. Szurgot, M. Kozanecki, M. Szynkowska, V. Ralchenko, V. Danilenko, P. Louda and S. Mitura, Diamond Relat. Mater., 17, 1179 (2008). https://doi.org/10.1016/j.diamond.2008.02.021
  15. J. Hruby, S. Vavreckova, L. Masaryk, A. Sojka, J. Navarro-Giraldo, M. Bartos, R. Herchel, J. Moncol, I. Nemec and P. Neugebauer, Molecules, 25, 5021 (2020). https://doi.org/10.3390/molecules25215021
  16. K. Goodson, O. Kading, M. Rosner and R. Zachai, Appl. Phys. Lett., 66, 3134 (1995). https://doi.org/10.1063/1.113625
  17. M. Ruoho, K. Valset, T. Finstad and I. Tittonen, Nanotechnology, 26, 195706 (2015). https://doi.org/10.1088/0957-4484/26/19/195706
  18. H. Cheng, C. Yang, L. Yang, K. Peng, C. Chia, S. Liu, I. Lin and K. Lin, J. Appl. Phys., 123, 165105 (2018). https://doi.org/10.1063/1.5016919
  19. M. Angadi, T. Watanabe, A. Bodapati, X. Xiao, O. Auciello, J. Carlisle, J. Eastman, P. Keblinski, P. Schelling and S. Phillpot, J. Appl. Phys., 99, 114301 (2006). https://doi.org/10.1063/1.2199974