DOI QR코드

DOI QR Code

양자점 감응 태양전지의 Cu2S 상대 전극 제작조건 최적화

Optimization of Fabrication Conditions for Cu2S Counter Electrodes of Quantum Dot-Sensitized Solar Cells

  • 정성목 (단국대학교 화학공학과) ;
  • 하승범 (단국대학교 화학공학과) ;
  • 서주원 (단국대학교 화학공학과) ;
  • 김재엽 (단국대학교 화학공학과)
  • JUNG, SUNG-MOK (Department of Chemical Engineering, Dankook University) ;
  • HA, SEUNG-BEOM (Department of Chemical Engineering, Dankook University) ;
  • SEO, JOO-WON (Department of Chemical Engineering, Dankook University) ;
  • KIM, JAE-YUP (Department of Chemical Engineering, Dankook University)
  • 투고 : 2021.11.25
  • 심사 : 2021.12.16
  • 발행 : 2021.12.30

초록

For the development of highly efficient quantum dot-sensitized solar cells (QDSCs), it is important to enhance the electrocatalytic activity of the counter electrodes (CEs). Herein, a fabrication process of Cu2S CEs are optimized for the development highly efficient QDSCs. The surface of brass film is treated with HCl solution to prepare the Cu2S CEs, and the concentraion as well as the temperature of HCl solution are controlled. It is found that the uniformity for the thickness of prepared Cu2S CEs is enhanced when the diluted HCl solution is used, compared to the HCl solution of standard concentration. In addition, the electrocatalytic activity of the Cu2S CEs is also increased with the modificed process, which is confirmed by impedance data and Tafel polarization curves. As a result, the photoconversion efficiency of QDSCs is improved from 4.49% up to 5.73%, when the concentraion and temperature of the HCl treatment are efficiently optimized.

키워드

참고문헌

  1. S. Ruhle, M. Shalom, and A. Zaban, "Quantum-dot-sensitized solar cells", ChemPhysChem, Vol. 11, 2010, pp. 2290-2304, doi: https://doi.org/10.1002/cphc.201000069.
  2. Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulovic, "Emergence of colloidal quantum-dot light-emitting technologies", Nature photonics, Vol. 7, 2013, pp. 13-23, doi: https://doi.org/10.1038/nphoton.2012.328.
  3. J. Du, R. Singh, I. Fedin, A. S. Fuhr, and V. I. Klimov, "Spectroscopic insights into high defect tolerance of Zn:CuInSe2 quantum-dot-sensitized solar cells", Nature Energy, Vol. 5, 2020, pp. 409-417, doi: https://doi.org/10.1038/s41560-020-0617-6.
  4. J. M. Caruge, J. E. Halpert, V. Wood, V. Bulovic, and M. G. Bawendi, "Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers", Nature Photonics, Vol. 2, 2008, pp. 247-250, doi: https://doi.org/10.1038/nphoton.2008.34.
  5. W. K. Bae, J. Lim, D. Lee, M. Park, H. Lee, J. Kwak, K. Char, C. Lee, and S. Lee, "R/G/B/natural white light thin colloidal quantum dot-based light-emitting devices", Advanced materials, Vol. 26, No. 37, 2014, pp. 6387-6393, doi: https://doi.org/10.1002/adma.201400139.
  6. D. R. Baker and P. V. Kamat, "Photosensitization of TiO2 nanostructures with CdS quantum dots: particulate versus tubular support architectures", Advanced Functional Materials, Vol. 19, No. 5, 2009, pp. 805-811, doi: https://doi.org/10.1002/adfm.200801173.
  7. Q. Shen, J. Kobayashi, L. J. Diguna, and T. Toyoda, "Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells", Journal of Applied Physics, Vol. 103, No. 8, 2008, pp. 084304, doi: https://doi.org/10.1063/1.2903059.
  8. S. D. Sung, I. Lim, P. Kang, C. Lee, and W. I. Lee, "Design and development of highly efficient PbS quantum dot-sensitized solar cells working in an aqueous polysulfide electrolyte", Chemical Communications, Vol. 54, 2013, pp. 6054-6056, doi: https://doi.org/10.1039/C3CC40754C.
  9. Z. Pan, I. Mora-Sero, Q. Shen, H. Zhang, Y. Li, K. Zhao, J. Wang, X. Zhong, and J. Bisquert, "High-efficiency "green" quantum dot solar cells", Journal of the American Chemical Society, Vol. 136, No. 25, 2014, pp. 9203-9210, doi: https://doi.org/10.1021/ja504310w.
  10. J. Du, Z. Du, J. S. Hu, Z. Pan, Q. Shen, J. Sun, D. Long, H. Dong, L. Sun, X. Zhong, and L. J. Wan, "Zn-Cu-In-Se quantum dot solar cells with a certified power conversion efficiency of 11.6%", Journal of the American Chemical Society, Vol. 138, No. 12, 2016, pp. 4201-4209, doi: https://doi.org/10.1021/jacs.6b00615.
  11. R. Oshima, A. Takata, and Y. Okada, "Strain-compensated InAs/GaNAs quantum dots for use in high-efficiency solar cells", Applied Physics Letters, Vol. 93, 2008, pp. 083111, doi: https://doi.org/10.1063/1.2973398.
  12. M. Zhou, G. Shen, Z. Pan, and X. Zhong, "Selenium cooperated polysulfide electrolyte for efficiency enhancement of quantum dot-sensitized solar cells", Journal of Energy Chemistry, Vol. 38, 2018, doi: https://doi.org/10.1016/j.jechem.2018.12.010.
  13. N. Buatong, I. M. Tang, and W. Pon-On, "The study of metal sulfide as efficient counter electrodes on the performances of CdS/CdSe/ZnS-co-sensitized hierarchical TiO2 sphere quantum dot solar cells", Nanoscale Research Letters, Vol. 12, No. 1, 2017, pp. 170, doi: https://doi.org/10.1186/s11671-017-1926-y.
  14. L. Hwang and K. Yong, "Counter electrodes for quantum-dot-sensitized solar cells", Journal of ChemElectroChem, Vol. 2, No. 5, 2015, pp. 634-653, doi: https://doi.org/10.1002/celc.201402405.
  15. N. Balis, V. Dracopoulos, K. Bourikas, and P. Lianos, "Quantum dot sensitized solar cells based on an optimized combination of ZnS, CdS and CdSe with CoS and CuS counter electrodes", Electrochimica Acta, Vol. 91, pp. 246-252, doi: https://doi.org/10.1016/j.electacta.2013.01.004.
  16. C. W. Kung, H. W. Chen, C. Y. Lin, K. C. Huang, R. Vittal, and K. C. Ho, "CoS acicular nanorod arrays for the counter electrode of an efficient dye-sensitized solar cell", ACS Nano, Vol. 6, No. 8, pp. 7016-7025, doi: https://doi.org/10.1021/nn302063s.
  17. M. S. Faber, K. Park, M. Caan-Acevedo, P. K. Santra, and S. Jin, "Earth-abundant cobalt pyrite (CoS2) thin film on glass as a robust, high-performance counter electrode for quantum dot-sensitized solar cells", The Journal of Physical Chemistry Letters, Vol. 4, No, 11, 2013, pp. 1843-1849, doi: https://doi.org/10.1021/jz400642e.
  18. H. Zhang, C. Wang, W. Peng, C. Yang, and X. Zhong, "Quantum dot sensitized solar cells with efficiency up to 8.7% based on heavily copper-deficient copper selenide counter electrode", Nano Energy, Vol. 23, 2016, pp. 60-69, doi: https://doi.org/10.1016/J.NANOEN.2016.03.009.
  19. J. Yu, W. Wang, Z. Pan, J. Du, Z. Ren, W. Xue, and X. Zhong, "Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte", Journal of Materials Chemistry A, Vol. 5, No. 27, 2017, pp. 14124-14133, doi: https://doi.org/10.1039/C7TA04344A.
  20. P. N. Kumar, A. Kolay, S. K. Kumar, P. Patra, A. Aphale, A. K. Srivastava, and M. Deepa, "Counter electrode impact on quantum dot solar cell efficiencies", ACS Applied Materials & Interfaces, Vol. 8, No. 41, 2016, pp. 27688-27700, doi: https://doi.org/10.1021/acsami.6b08921.
  21. S. Das, P. Sudhagar, V. Verma, D. Song, E. Ito, S. Y. Lee, Y. S. Kang, and W. Choi, "Amplifying charge-transfer characteristics of graphene for triiodide reduction in dye-sensitized solar cells", Advanced Functional Materials, Vol. 21, No. 19, 2011, pp. 3729-3736, doi: https://doi.org/10.1002/adfm.201101191.
  22. Y. Cao, Y. Xiao, J. Y. Jung, H. D. Um, S. W. Jee, H. M. Choi, H. Bang, and J. H. Lee, "Highly electrocatalytic Cu2ZnSn (S1-xSex)4 counter electrodes for quantum-dot-sensitized solar cells", ACS Applied Materials & Interfaces, Vol. 5, No. 3, 2013, pp. 479-484, doi: https://doi.org/10.1021/am302522c.