Acknowledgement
This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20213030040110).
References
- F. O. Ayodele, S. I. Mustapa, B. V. Ayodele, and N. Mohammad, "An overview of economic analysis and environmental impacts of natural gas conversion technologies", Sustainability, Vol. 12, No. 23, 2020, pp. 10148, doi: https://doi.org/10.3390/su122310148.
- D. Peterson, D. A. DeSantis, and M. Hamdan, "DOE hydrogen and fuel cells program record 20004: cost of electrolytic hydrogen production with existing technology", 2020.
- D. Peterson, E. L. Miller, A. Brisse, J. Hartvigsen, R. J. Petri, G. G. Tao, and S. Satyapal, "DOE Hydrogen and fuel cells program record 16014: hydrogen production cost from solid oxide electrolysis", Hydrogen, 2016. Retrieved from https://www.hydrogen.energy.gov/pdfs/16014_h2_production_cost_solid_oxide_electrolysis.pdf.
- V. T. Giap, Y. D. Lee, Y. S. Kim, and K. Y. Ahn, "Techno-economic analysis of reversible solid oxide fuel cell system couple with waste steam", Trans Korean Hydrogen New Energy Soc, Vol. 30, No. 1, 2019, pp. 21-28, doi: https://doi.org/10.7316/KHNES.2019.30.1.21.
- Y. Zheng, J. Wang, B. Yu, W. Zhang, J. Chen, J. Qiao, and J. Zhang, "A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): advanced materials and technology", Chemical Society Reviews, Vol. 46, No. 5, 2017, pp. 1427-1463. https://doi.org/10.1039/c6cs00403b
- Q. P. Fang, L. Blum, R. Peters, M. Peksen, P. Batfalsky, and D. Stolten, "SOFC stack performance under high fuel utilization", International Journal of Hydrogen Energy, Vol. 40, No. 2, 2015, pp. 1128-1136, doi: https://doi.org/10.1016/j.ijhydene.2014.11.094.
- R. Elder, D. Cumming, and M. B. Mogensen, "Chapter 11-high temperature electrolysis", Carbon Dioxide Utilisation, 2015, pp. 183-209, doi: https://doi.org/10.1016/B978-0-444-62746-9.00011-6.
- M. B. Mogensen, M. Chen, H. L. Frandsen, C. Graves, J. B. Hansen, K. V. Hansen, A. Hauch, T. Jacobsen, S. H. Jensen, T. L. Skafte, and X. Sun, "Reversible solid-oxide cells for clean and sustainable energy", Clean Energy, Vol. 3, No. 3, 2019, pp. 175-201, doi: https://doi.org/10.1093/ce/zkz023.
- HELMETH, "High temperature electrolysis cell (SOEC)". Retrieved from http://www.helmeth.eu/index.php/technologies/high-temperature-electrolysis-cell-soec.
- V. Saarinen, J. Pennanen, M. Kotisaari, O. Thomann, O. Himanen, S. Di Iorio, P. Hanoux, J. Aicart, K. Couturier, X. Sun, M. Chen, and B. R. Sudireddy, "Design, manufacturing, and operation of movable 2 × 10 kW size rSOC system", Fuel Cells, Vol. 21, No. 5, 2021, pp. 477-487, doi: https://doi.org/10.1002/fuce.202100021.
- Y. S. Kim, Y. D. Lee, K. Y. Ahn, D. K. Lee, S. M. Lee, and E. J. Choi, "Operation characteristics according to steam temperature and effectivenss of external steam-related SOEC system", Trans Korean Hydrogen New Energy Soc, Vol. 31, No. 6, 2020. pp. 596-604, doi: https://doi.org/10.7316/KHNES.2020.31.6.596.
- J. Schefold, A. Brisse, and H. Poepke, "23,000 h steam electrolysis with an electrolyte supported solid oxide cell", International Journal of Hydrogen Energy, Vol. 42. No. 19, 2017, pp. 13415-13426, doi: https://doi.org/10.1016/j.ijhydene.2017.01.072.
- J. Schefold, A. Brisse, A. Surrey, and C. Walter, "80,000 current on/off cycles in a one year long steam electrolysis test with a solid oxide cell", International Journal of Hydrogen Energy, Vol. 45, No. 8, 2020, pp. 5143-5154, doi: https://doi.org/10.1016/j.ijhydene.2019.05.124.
- EBSILOW, "Technologies, S.E.S.-S". Retrieved from: https://www.ebsilon.com/en/.
- G. Schiller, M. Lang, N. Monnerie, H. v. Storch, J. Reinhold, and P. Sundarraj, "Solar heat integrated solid oxide steam electrolysis for highly efficient hydrogen production", Journal of Power Sources, Vol. 416, 2019, pp. 72-78, doi: https://doi.org/10.1016/j.jpowsour.2019.01.059.