DOI QR코드

DOI QR Code

Development of a Multi-Physics Model of Polymer Electrolyte Membrane Fuel Cell Using Aspen Custom Modeler

Aspen Custom Modeler를 이용한 고분자전해질 연료전지 다중 물리 모델 개발

  • SON, HYEYOUNG (Department of Mechanical Engineering, Chungnam National University Graduate School) ;
  • HAN, JAESU (Department of Mechanical Engineering, Chungnam National University Graduate School) ;
  • YU, SANGSEOK (Department of Mechanical Engineering, Chungnam National University)
  • 손혜영 (충남대학교 대학원 기계공학과) ;
  • 한재수 (충남대학교 대학원 기계공학과) ;
  • 유상석 (충남대학교 기계공학부)
  • Received : 2021.10.08
  • Accepted : 2021.12.16
  • Published : 2021.12.30

Abstract

The performandce of polymer electrolyte membrane fuel cell depends on the effective management of heat and product water by the electrochemical reaction. This study is designed to investigate the parametric change of heat management along the channel of polymer electrolyte membrane. The model was developed by an aspen custom modeler that it can solve differential equation with distretization model. The model can simulate water transport through the membrane electrolyte that is coupled with heat generation. In order to verify the model, it is compared with the experimental data. The water transport behavior is then evaluated with the simulation model.

Keywords

Acknowledgement

본 연구는 2021년도 산업통상자원부 및 산업기술평가관리원(KEIT)의 지원(20015756)과 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 지원(No. 20203010030010)을 받아 수행된 연구이다.

References

  1. N. Z. Muradov and T. N. Veziroglu, ""Green" path from fossil-based to hydrogen economy: an overview of carbonneutral technologies", Int. J. Hydrog. Energy, Vol. 33, No.23, 2008, pp. 6804-6839, doi: https://doi.org/10.1016/j.ijhydene.2008.08.054.
  2. M. Steinberg, "Fossil fuel decarbonization technology for mitigating global warming", Int. J. Hydrog. Energy, Vol. 24, No. 8, 1999, pp. 771-777, doi: https://doi.org/10.1016/S0360-3199(98)00128-1.
  3. L. Carrette, K. A. Friedrich, and U. Stimming, "Fuel cells: principles, types, fuels, and applications", ChemPhysChem, Vol. 1, No. 4, 2000, pp. 162-193, doi: https://doi.org/10.1002/1439-7641(20001215)1:4%3C162::aid-cphc162%3E3.0.co;2-z.
  4. J. Larminie and A. dicks, "Fuel cell systems explained, second edition", WILEY, 2003, doi: https://doi.org/10.1002/9781118878330.
  5. D. M. Bernardi and M. W. Verbrugge, "Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte", AICHE J, Vol. 37, No. 8, 1991, pp. 1151-1163, doi: https://doi.org/10.1002/aic.690370805.
  6. T. E. Springer, T. A. Zawodzinski, and S. Gottesfeld, "Polymer electrolyte fuelcell model", J. Electrochem. Soc., Vol. 138, No. 8, 1991, pp. 2334-2342, doi: https://doi.org/10.1149/1.2085971.
  7. T. V. Nguyen and R. E. White, "A water and heat management model for proton-exchange-membrane fuel cells", Journal of the Electrochemical Society, Vol. 140, No. 8, 1993, pp. 2178, doi: https://doi.org/10.1149/1.2220792.
  8. S. Dutta, S. Shimpalee, and J. W. Van Zee, "Three dimensional numerical simulation of straight channel PEM fuel cells", Journal of Applied Electrochemistry, Vol. 30, No. 2, 2000, pp. 135-146, doi: https://doi.org/10.1023/A:1003964201327.
  9. J. S. Yang, G. M. Choi, and D. J. Kim, "Prediction of fuel cell performance and water content in the membrane of a proton exchange membrane fuel cell", The Korean Society Of Automotive Engineers, 2006, pp. 151-159. Retrieved from https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE00770118.
  10. P. C. Sui, L. D. Chen, J. P. Seaba, and Y. Wariishi, "Modeling and optimization of a PEMFC catalyst layer", SAE, 1999, doi: https://doi.org/10.4271/1999-01-0539.
  11. J. T. Pukrushpan, "Modeling and control of fuel cell systems and fuel processors", Ph.D. dissertation, Univ. of Michigan, 2003. Retrieved from https://www.semanticscholar.org/paper/Modeling-and-control-of-fuel-cell-systems-and-fuelPukrushpan/75f4c71d3ac70d3688270e761f6f07786fd84b49.
  12. S. Yu and D. Jung, "Thermal management strategy for a proton exchange membrane fuel cell system with a large active cell area", Renewable Energy, Vol. 33, No. 12, 2008, pp. 2540-2548, doi: https://doi.org/10.1016/j.renene.2008.02.015.
  13. J. Y. Han, K. H. Lee, and S. S. Yu, "Dynamic modeling of cooling system thermal management for automotive PEMFC application", Transactions of the Korean Society of Mechanical Engineers B, Vol. 36, No. 12, 2012, pp. 1185-1192, doi: https://doi.org/10.3795/KSME-B.2012.36.12.1185.
  14. F. P. Incropera, D.P. Dewitt, T. L. Bergman, and A. S. Lavine, "Principles of heat and mass transfer", WILEY, 2018.
  15. L. Wang, A. Husar, T. Zhou, and H. Liu, "A parametric study of PEM fuel cell performances", Int. J. Hyd. Energy, Vol. 28, No. 11, 2003, pp. 1263-1272, doi : https://doi.org/10.1115/imece2002-33167.