DOI QR코드

DOI QR Code

Multi-Layered Sintered Porous Transport Layers in Alkaline Water Electrolysis

다층 소결메쉬 확산체를 이용한 알칼라인 수전해 셀

  • YEOM, SANG HO (Hydrogen Research Department, Korea Institute of Energy Research) ;
  • YUN, YOUNG HWA (Hydrogen Research Department, Korea Institute of Energy Research) ;
  • CHOI, SEUNGWOOK (Platform Technology Laboratory, Korea Institute of Energy Research) ;
  • KWON, JIHEE (Platform Technology Laboratory, Korea Institute of Energy Research) ;
  • LEE, SECHAN (Hydrogen Research Department, Korea Institute of Energy Research) ;
  • LEE, JAE HUN (Hydrogen Research Department, Korea Institute of Energy Research) ;
  • LEE, CHANGSOO (Hydrogen Research Department, Korea Institute of Energy Research) ;
  • KIM, MINJOONG (Hydrogen Research Department, Korea Institute of Energy Research) ;
  • KIM, SANG-KYUNG (Hydrogen Research Department, Korea Institute of Energy Research) ;
  • UM, SUKKEE (Department of Mechanical Engineering, Hanyang University) ;
  • KIM, CHANG-HEE (Hydrogen Research Department, Korea Institute of Energy Research) ;
  • CHO, WON CHUL (Hydrogen Research Department, Korea Institute of Energy Research) ;
  • CHO, HYUN-SEOK (Hydrogen Research Department, Korea Institute of Energy Research)
  • 염상호 (한국에너지기술연구원 수소연구단) ;
  • 윤영화 (한국에너지기술연구원 수소연구단) ;
  • 최승욱 (한국에너지기술연구원 플랫폼연구실) ;
  • 권지희 (한국에너지기술연구원 플랫폼연구실) ;
  • 이세찬 (한국에너지기술연구원 수소연구단) ;
  • 이재훈 (한국에너지기술연구원 수소연구단) ;
  • 이창수 (한국에너지기술연구원 수소연구단) ;
  • 김민중 (한국에너지기술연구원 수소연구단) ;
  • 김상경 (한국에너지기술연구원 수소연구단) ;
  • 엄석기 (한양대학교 기계공학부) ;
  • 김창희 (한국에너지기술연구원 수소연구단) ;
  • 조원철 (한국에너지기술연구원 수소연구단) ;
  • 조현석 (한국에너지기술연구원 수소연구단)
  • Received : 2021.10.02
  • Accepted : 2021.12.10
  • Published : 2021.12.30

Abstract

The porous transport layer (PTL) is essential to effectively remove oxygen and hydrogen gas from the electrode surface at high current density operation conditions. In this study, the effect of PTL with different characteristics such as pore size, pore gradient, interfacial coating was investigated by multi-layered sintered mesh. A water electrolysis single cell of active area of the 34.56 cm2 was constructed, and IV performance and impedance analysis were conducted in the range of 0 to 2.0 A/cm2. It was confirmed that the multi-layered sintered mesh PTL, which have an average pore size of 25 to 57 ㎛ and a larger pore gradient, removed bubbles effectively and thus seemed to improve IV performance. Also, it was confirmed that the catalytic metals such as Ni, NiMo coating on the PTL reduced activation overpotential, but increased mass transport overpotential.

Keywords

Acknowledgement

The authors gratefully acknowledge partial financial support for this work by the Hydrogen Energy Innovation Technology Development Program of the National Research Foundation (NRF) of Korea funded by the Ministry of Science and ICT (NRF-2019M3E6A1064020). This research was also supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of Korea (20203030040030).

References

  1. M. Conte, A. Iacobazzi, M. Ronchetti, and R. Vellone, "Hydrogen economy for a sustainable development: state-of-the-art and technological perspectives", Journal of Power Sources, Vol. 100, No. 1-2, 2001, pp. 171-187, doi: https://doi.org/10.1016/S0378-7753(01)00893-X.
  2. S. H. Kang, S. J. Choi, and J. W. Kim, "Analysis of the world energy status and hydrogen energy technology R&D of foreign countries", Trans Korean Hydrogen New Energy Soc, Vol. 18, No. 2, 2007, pp. 216-223. Retrieved from https://www.koreascience.or.kr/article/JAKO200721036737451.pdf.
  3. G. Schiller, R. Henne, and V. Borck, "Vacuum plasma spraying of high-performance electrodes for alkaline water electrolysis", JTST, Vol. 4, 1995, pp. 185-194, doi: https://doi.org/10.1007/BF02646111.
  4. B. Luca, C. Alvin, H. David, L. Franz, M. Ben, and S. Eleanor, "Study on development of water electrolysis in the EU", E4tech, 2014, pp. 1-160. Retrieved from https://www.fch.europa.eu/sites/default/files/FCHJUElectrolysisStudy_FullReport%20(ID%20199214).pdf.
  5. M. Wang, Z. Wang, X. Gong, and Z. Guo, "The intensification technologies to water electrolysis for hydrogen production -a review", Renewable and Sustainable Energy Reviews, Vol. 29, 2014, pp. 573-588, doi: https://doi.org/10.1016/j.rser.2013.08.090.
  6. J. Michalski, U. Bunger, F. Crotogino, S. Donadei, G. S. Schneider, T. Pregger, K. K. Cao, and D. Heide, "Hydrogen generation by electrolysis and storage in salt caverns: potentials, economics and systems aspects with regard to the German energy transition", International Journal of Hydrogen Energy, Vol. 42, No. 19, 2017, pp. 13427-13443, doi: https://doi.org/10.1016/j.ijhydene.2017.02.102.
  7. O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson, and S. Fewa, "Future cost and performance of water electrolysis: an expert elicitation study", International Journal of Hydrogen Energy, Vol. 42, No. 52, 2017, pp. 30470-30492, doi: https://doi.org/10.1016/j.ijhydene.2017.10.045.
  8. B. Jorn and T. Turek, "Alkaline water electrolysis powered by renewable energy: a review", Processes, Vol. 8, No. 2, 2020, pp. 248, doi: https://doi.org/10.3390/pr8020248.
  9. A. Ursua, L. M. Gandia, and P. Sanchis, "Hydrogen production from water electrolysis: current status and future trends", Proceedings of the IEEE, Vol. 100, No. 2, 2011, pp. 410-426, doi: https://doi.org/10.1109/JPROC.2011.2156750.
  10. K. S. Shiva and V. Himabindu, "Hydrogen production by PEM water electrolysis-a review", Materials Science for Energy Technologies, Vol. 2, No. 3, 2019, pp. 442-454, doi: https://doi.org/10.1016/j.mset.2019.03.002.
  11. H. I. Lee, M. Mehdi, S. K. Kim, H. S. Cho, M. J. Kim, W. C. Cho, Y. W. Rhee, and C. H. Kim, "Advanced zirfon-type porous separator for a high-rate alkaline electrolyser operating in a dynamic mode", Journal of Membrane Science, Vol. 616, 2020, pp. 118541, doi: https://doi.org/10.1016/j.memsci.2020.118541.
  12. H. S. Choi, D. S. Yim, C. H. Rhyu, J. C. Kim, and G. J. Hwang, "Study on the electrode characteristics for the alkaline water electrolysis", Trans Korean Hydrogen New Energy Soc, Vol. 23, No. 2, 2012, pp. 117-124, doi: https://doi.org/10.7316/KHNES.2012.23.2.117.
  13. J. Lee, C. Lee, K. Fahy, P. Kim, K. Krause, J. LaManna, E. Baltic, D. Hussey, D. Jacobson, and A. Bazylak, "Accelerating bubble detachment in porous transport layers with patterned throughpores", ACS Applied Energy Materials, Vol. 3, No. 10, 2020, pp. 9676-9684, doi: https://doi.org/10.1021/acsaem.0c01239.
  14. M. Carmo, D. L. Fritz, J. Mergel, and D. Stolten, "A comprehensive review on PEM water electrolysis", International Journal of Hydrogen Energy, Vol. 38, No. 12, 2013, pp. 4901-4934, doi: https://doi.org/10.1016/j.ijhydene.2013.01.151.
  15. Jude O. Majasan, F. Iacoviello, I. S. Cho, M. Maier, X. Lu, T. P. Neville, I. Dedigama, P. R. Shearing, and D. J.L. Brett, "Correlative study of microstructure and performance for porous transport layers in polymer electrolyte membrane water electrolysers by X-ray computed tomography and electrochemical characterization", International Journal of Hydrogen Energy, Vol. 44, No. 36, 2019, pp. 19519-19532, doi: https://doi.org/10.1016/j.ijhydene.2019.05.222.
  16. O. Panchenko, E. Borgardt, W. Zwaygardt, F. J. Hackemuller, M. Bram, N. Kardjilov, and W. Lehnert, "In-situ two-phase flow investigation of different porous transport layer for a polymer electrolyte membrane (PEM) electrolyzer with neutron spectroscopy", Journal of Power Sources, Vol. 390, 2018, pp. 108-115, doi: https://doi.org/10.1016/j.jpowsour.2018.04.044.
  17. C. H. Lee, R. Banerjee, F. Arbabi, J. Hinebaugh, and A. Bazylak, "Porous transport layer related mass transport losses in polymer electrolyte membrane electrolysis: a review", International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2016, doi: https://doi.org/10.1115/ICNMM2016-7974.
  18. I. Hiroshi, M. Tetsuhiko, A. Nakano, H. Chul, I. Masayoshi, K. Atsushi, and Y. Tetsuya, "Experimental study on porous current collectors of PEM electrolyzers", International Journal of Hydrogen Energy, Vol. 37, No. 9, 2012, pp. 7418-7428, doi: https://doi.org/10.1016/j.ijhydene.2012.01.095.
  19. S. A. Grigoriev, P. Millet, S. A. Volobuev, and V. N. Fateev, "Optimization of porous current collectors for PEM water electrolysers", International Journal of Hydrogen Energy, Vol. 34, No. 11, 2009, pp. 4968-4973, doi: https://doi.org/10.1016/j.ijhydene.2008.11.056.
  20. L. Chang, C. Marcelo, B. Guido, E. Andreas, L. Thomas, Y. James, S. Tom, S. Detlef, and L. Werner, "Performance enhancement of PEM electrolyzers through iridium-coated titanium porous transport layers", Electrochemistry communications, Vol. 97, 2018, pp. 96-99, doi: https://doi.org/10.1016/j.elecom.2018.10.021.
  21. S. Maximilian, T. Geert, C. Marcelo, L. Wiebke, M. Martin, and S. Detlef, "Acidic or alkaline? Towards a new perspective on the efficiency of water electrolysis", Journal of the Electrochemical Society, Vol. 163, No. 11, 2016, pp. F3197-F3208, doi: https://doi.org/10.1149/2.0271611jes.
  22. F. Marangio, M. Santarelli, and M. Cali, "Theoretical model and experimental analysis of a high pressure PEM water electrolyser for hydrogen production", International Journal of Hydrogen Energy, Vol. 34, No. 3, 2009, pp. 1143-1158, doi: https://doi.org/10.1149/2.0271611jes.
  23. M. R. Kraglund, "Alkaline membrane water electrolysis with non-noble catalysts", Energy, Vol. 13, 1988, pp. 141-150. Retrieved from https://core.ac.uk/download/pdf/131523537.pdf. https://doi.org/10.1016/0360-5442(88)90038-2
  24. M. B. I. Janjua and R. L. Le Roy. "Electrocatalyst performance in industrial water electrolysers", International Journal of Hydrogen Energy, Vol. 10, No. 1, 1985, pp. 11-19, doi: https://doi.org/10.1016/0360-3199(85)90130-2.
  25. X. Tang, L. Xiao, C. Yang, J. Lu, and L. Zhuang, "Noble fabrication of Ni-Mo cathode for alkaline water electrolysis and alkaline polymer electrolyte water electrolysis", International Journal of Hydrogen Energy, Vol. 39, No. 7, 2014, pp. 3055-3060, doi: https://doi.org/10.1016/j.ijhydene.2013.12.053.