DOI QR코드

DOI QR Code

O, S-Aryl Nucleophlic Substitution of Various Aryl Halides Under Microwave-Assiated Copper Catalyzed Reaction

마이크로웨이브와 구리 촉매 조건에서 다양한 방향족할라이드에 대한 페놀 및 싸이오페놀 유도체의 친핵성 치환 반응성 연구

  • Kang, Hee-Sung (Department of Chemistry, Chungnam National University) ;
  • Yum, Eul Kgun (Department of Chemistry, Chungnam National University) ;
  • Heo, Jungseok (Department of Chemistry, Chungnam National University)
  • 강희성 (충남대학교 자연대학 화학과) ;
  • 염을균 (충남대학교 자연대학 화학과) ;
  • 허정석 (충남대학교 자연대학 화학과)
  • Received : 2020.10.15
  • Accepted : 2020.11.20
  • Published : 2021.02.20

Abstract

Keywords

References

  1. Cirla, A.; Mann, J. Nat. Prod. Rep., 2003, 20, 558. https://doi.org/10.1039/b306797c
  2. Pitsinos, E. N.; Vidali, V. P.; Couladouros, E. A. Eur. J. Org. Chem. 2011, 1207.
  3. Brockway, A. J.; Grove, C. I.; Mahoney, M. E.; Shaw, J. T. Tetrahedron Lett. 2015, 56, 3396 https://doi.org/10.1016/j.tetlet.2015.01.073
  4. am Ende, C. W.; Knudson, S. E.; Liu, N.; Child, J.; Sullivan, T. J.; Boyne, M.; Xu, H.; Gegina, Y.; Knudson, D. L.; Johnson, F.; Peloquin, C. A.; Slayden, R. A.; Tonge, P. J. Bioorg. Med. Chem. Lett. 2008, 18, 3029. https://doi.org/10.1016/j.bmcl.2008.04.038
  5. Cox, C. Journal of Pesticide Reform Summer 2003, 23, 10.
  6. Walton, J. W.; William, J. M. J. Chem. Commun, 2015, 51, 2786. https://doi.org/10.1039/c4cc07116f
  7. Ullmann, F.; Bieleccki, J. Ber. Dtsch. Chem. Ges. 1901, 34, 2174. https://doi.org/10.1002/cber.190103402141
  8. Ullmann, F. Ber. Dtsch. Chem. Ges. 1903, 36, 2382. https://doi.org/10.1002/cber.190303602174
  9. (a) Krishnan, K. K.; Ujwaldev, S. M.; Sindhu, K. S.; Anilkumar, G. Tetrahedron 2016, 72, 7393. https://doi.org/10.1016/j.tet.2016.10.002
  10. (b) Yang, S.; Wu, C.; Zhou, H.; Yang, Y.; Zhao, Y.; Wang, C.; Yang, W.; Xu, J. Advanced Synthesis& Catalysis. 2013, 355, 53. https://doi.org/10.1002/adsc.201200600
  11. (c) Ramezani, L.; Yahyazadeh, A.; Sheykhan, M. ChemCatChem 2018, 10, 4636. https://doi.org/10.1002/cctc.201801111
  12. Qiao, J. X.; Lam, P. Y. S. Synthesis 2011, 829.
  13. Kunz, K.; Scholz, U.; Ganzer, D. Synthesis 2003, 2428.
  14. Frlan, R.; Kikelj, D. Synthesis 2006, 2271.
  15. Bryan, M. C.; Dunn, P. J.; Entwistle, D.; Gallou, F.; Koenig, S. G.; Hayler, J. D.; Hickey, M. R.; Hughes, S.; Kopach, M. E.; Moine, G.; Richardson, P.; Roschangar, F.; Steven, A.; Weiberth, F. J. Green Chem, 2018, 20, 5082. https://doi.org/10.1039/c8gc01276h
  16. Gawande, M. B.; Shelke, S. N.; Zboril, R.; Varma, R. S. Acc. Chem. Res. 2014, 47, 1338. https://doi.org/10.1021/ar400309b
  17. Kumar, A.; Kuang, Y.; Ling, Z.; Sun, X. Materials Today Nano, 2020, 100076.
  18. Kappe, C. O.; Dallinger, D.; Murphree, S. S. Pratical Microwave Synthesis for Organic Synthesis, Wiley-VCH, Weonheim, 2009.
  19. Park, A. R.; Yum, E. K. Bull. Korean Chem. Soc. 2018, 39, 1259. https://doi.org/10.1002/bkcs.11585
  20. Oh, Y. J.; Yum, E. K. Bull. Korean Chem. Soc. 2019, 40, 404. https://doi.org/10.1002/bkcs.11698
  21. Park, A. R.; Choi, S. M.; Kim, T. S.; Yum, E. K. Bull. Korean Chem. Soc. 2019, 40, 1134. https://doi.org/10.1002/bkcs.11866
  22. Choi, S. M.; Byeon, J. S.; Yum, E. K. Bull. Korean Chem. Soc. 2020, 41, 837. https://doi.org/10.1002/bkcs.12075
  23. Ma, D.; Cai, Q. Synlett, 2004, 128.