DOI QR코드

DOI QR Code

Analysis of Cognition Levels related to Acid-Base Models in High School Science-Gifted Students

고등학교 과학영재 학생들의 산-염기 모델의 인지 수준 분석

  • Received : 2020.09.07
  • Accepted : 2020.11.11
  • Published : 2021.02.20

Abstract

In this study, the model cognition level of high school science-gifted students about the two types of acid-base models taught in secondary schools was analyzed. In order to find out the model cognition level of students, 12 items were developed based on the acid-base reaction and the dissociation reaction of acids and bases. The subjects of the study were 95 students of two science-gifted schools. As a result of the questionnaire analysis, model cognition levels were analyzed 6 levels in the context of consistency, inconsistency, and unexplainable scope of the two models. In the acid-base reaction item, the largest percentage of students cognized only understanding of the two models. In the acid-base dissociation reaction item, they understood the two models and perceived the 'Known Ignorance' that cognizes the limitations of one model. However, there was only one student who perceived the limitations of both models and all of the 'Unknown Ignorance' that the model could not explain. Through this, we argued that there is a need for educational efforts to raise the model cognition level of science-gifted students.

본 연구에서는 중등학교에서 가르치는 두 유형의 산-염기 모델에 대한 고등학교 과학영재 학생들의 모델 인지 수준을 분석하였다. 학생들의 모델 인지 수준을 알아보기 위하여 산-염기 반응과 산과 염기의 해리와 관련된 12개의 문항으로 구성된 설문지를 개발하였다. 연구 대상자는 2개의 과학영재학교에서 95명의 학생들이었다. 설문 분석 결과, 두 모델의 일치 상황, 불일치 상황, 설명할 수 없는 범위의 상황에서 모델 인지 수준은 6가지로 분석되었다. 산-염기 반응의 문항에서는 가장 많은 비율의 학생들이 두 모델을 모두 이해하는 수준이었고, 산과 염기의 해리 문항에서는 두 모델을 이해하고, 한 모델이 갖는 한계를 인식하는 '인지된 이그노런스'만 인식하는 수준이었다. 그러나 두 모델이 갖는 한계도 인식하고, 모델이 설명하지 못하는 범위인 '미인지된 이그노런스'까지 모두 인식한 학생은 단 1명 뿐이었다. 이를 통해 과학영재 학생들의 모델 인지 수준을 높이기 위한 교육적 노력이 필요함을 주장하였다.

Keywords

References

  1. Aleixandre, M. P. J.; Crujeiras, B. Practices and Scientific Practices in Science Education. In science education; Keith, S.; Taber, K. S.; Akpan, B. B., Eds.; Brill, 2017, 616.
  2. Osborne, J. Scientific practices and inquiry in the science classroom. In Handbook of Research on Science Education; Lederman, N. G.; Abell, S. K., Eds.; Routledge: NY, 2014, 579.
  3. Osborne, J. School Science Review, 2011, 93, 93.
  4. Kang, N. H. Journal of the Korean Association for Science Education 2017, 37, 143. https://doi.org/10.14697/jkase.2017.37.1.0143
  5. Schwarz, C. V.; White, B. Y. Cognition and Instruction 2005, 23, 165. https://doi.org/10.1207/s1532690xci2302_1
  6. Somerville, R. C.; Hassol, S. J. Physics Today 2011, 64, 48. https://doi.org/10.1063/PT.3.1296
  7. Passmore, C.; Gouvea, J. S.; Giere, R. Models in Science and in Learning Science: Focusing Scientific Practice on Sense-making. In International Handbook of Research in History, Philosophy and Science Teaching; Matthews, M. R., ed.; Springer:Dordrecht, 2014, 1171.
  8. Models as mediators: Perspectives on Natural and Social Science; Morgan, M. S.; Morrison, M., Eds.; Cambridge University Press, 1999.
  9. Cartwright, N. The Dappled World: A Study of the Boundaries of Science; Cambridge University Press: Cambridge, 1999.
  10. Ryu, E. J.; Paik, S. H. Journal of the Korean Chemical Society 2020, 64, 267. https://doi.org/10.5012/JKCS.2020.64.5.267
  11. Edwards, J. Research in Science Education 1990, 20, 66. https://doi.org/10.1007/BF02620481
  12. Firestein, S. Ignorance: How It Drives Science; Oxford University Press: USA, 2012.
  13. Firestein, S. Failure:Why Science Is So Successful; Oxford University Press: USA, 2015.
  14. Smithson, M. Research Article 1993, 15, 133.
  15. Cho, H. S.; Nam, J. H. Journal of the Korean Association for Science Education, 2017, 37, 539. https://doi.org/10.14697/jkase.2017.37.4.539
  16. Justi, R.; Gilbert, J. K. International Journal of Science Education, 2002, 24, 369. https://doi.org/10.1080/09500690110110142
  17. Schwarz, C. V. Is there a connection? The role of metamodeling knowledge in learning with models. In Keeping Learning Complex: The Proceedings of the Fifth International Conference of the Learning Sciences (ICLS); Bell, P.; Stevens, R.; Satwicz, T., Eds.; Erlbaum: Mahwah, NJ, 2002.
  18. Grosslight, L.; Unger, C.; Jay, E.; Smith, C. J. Journal of Research in Science Teaching, 1991, 28, 799. https://doi.org/10.1002/tea.3660280907
  19. Krel, M.; Reinisch, B.; Kruger, D. Research in Science Education, 2014, 45, 367. https://doi.org/10.1007/s11165-014-9427-9
  20. Jang, E. K.; Ko, W.; Kang, S. J. Journal of the Korean Assocciation for Science Education, 2012, 32, 1. https://doi.org/10.14697/jkase.2012.32.1.001
  21. White, B. Y.; Schwarz, C. V. Alternative aproaches to using modeling and simulation tools for teaching science. In Computer modeling and simulation in science education; Feurzeig, W.; Roberts, N., Eds.; Springer-Verlag: New York, 1999, 26.
  22. Van Driel, J. H.; Verlop, N. International Journal for Science Education, 1999, 21, 141. https://doi.org/10.1080/095006999290110
  23. Schwarz, C. V.; White, B. Y. Fostering middlschool students' understanding of scientific modeling. Paper presented at the annual meeting of American Educational Research Association; San Diego, CA., 1998.
  24. Carey, S.; Smith, C. Educational Psychologist, 1993, 28, 235. https://doi.org/10.1207/s15326985ep2803_4
  25. Kim, S. K.; Kim, J. E.; Paik, S. H. Journal of the Korean Chemical Society, 2019, 63, 102. https://doi.org/10.5012/JKCS.2019.63.2.102
  26. Kim, J. E.; Kim, S. K.; Paik, S. H. Journal of the Korean Chemical Society, 2020, 64, 111.
  27. Paik, S. H.; Choi, J. I.; Park, E. J. Journal of the Korean Association for Science Education 2013, 33, 1273. https://doi.org/10.14697/jkase.2013.33.7.1273
  28. Ryu, E. J.; Paik, S. H. Journal of the Korean Chemical Society 2020, 64, 175. https://doi.org/10.5012/JKCS.2020.64.3.175
  29. Nott, M.; Wellington, J. Science and Education 1998, 7, 579. https://doi.org/10.1023/A:1008631328479
  30. Kitchener, K. S. Human Development 1983, 26, 222. https://doi.org/10.1159/000272885
  31. Barzilai, S.; Zohar, A. Epistemic (meta) cognition: Ways of thinking about knowledge and knowing. In Handbook of Epistemic Cognition; Greene, J. A.; Sandoval, W. A.; Braten, I., Eds.; Routledge:NY, 2016.
  32. Carr, M. Research in Science Education 1984, 14, 97. https://doi.org/10.1007/BF02356795
  33. Cokelez, A. Journal of chemical education 2010, 87, 102. https://doi.org/10.1021/ed800017b
  34. McClary, L.; Talanquer, V. Journal of Research in Science Teaching 2011, 48, 396. https://doi.org/10.1002/tea.20407
  35. Drechsler, M.; Schmidt, H. Chemistry Education Research and Practice 2005, 6, 19. https://doi.org/10.1039/b4rp90002b
  36. Paik, S. H.; Go, H. S.; Jeon, M. C. Journal of the Korean Chemical Society 2013, 57, 279. https://doi.org/10.5012/jkcs.2013.57.2.279
  37. Kim, S. K.; Choi, H.; Park, C. Y.; Paik, S. H. Journal of the Korean Association for Science Education 2019, 63, 56.
  38. Kerwin, A. Knowledge 1993, 15, 166. https://doi.org/10.1177/107554709301500204
  39. Kang, C. W. Sogang Journal of Philosophy 2006, 12, 63.
  40. Wobbe, D. V.; Albert, P. Journal of Chemistry Education 2001, 78, 494. https://doi.org/10.1021/ed078p494
  41. John, H.; Go, M. J. The History of Chemistry; Book's hill: Seoul, 2005.
  42. Brubaker, C. H., Jr. Journal of Chemical Education 1957, 34, 325. https://doi.org/10.1021/ed034p325
  43. Go, H. S.; Kim, K. E.; Paik, S. H. Journal of the Korean Chemical Society 2012, 56, 628. https://doi.org/10.5012/jkcs.2012.56.5.628
  44. Paik, S. H. The History of Chemistry; imotionmedia: Seoul, 2018.
  45. Zumdahl, S. S.; Zumdahl, S. A. Chemistry 8th ed.; Cengage Learning: Singapore, 2010.
  46. Oxtoby, D.; Gillis, H. P.; Campion, A. Principles of Modern Chemistry, 7th ed.; Cengage Learning: NY, 2012.
  47. Creswell, J. W.; Miller, D. L. Theory Into Practice 2000, 39, 124. https://doi.org/10.1207/s15430421tip3903_2
  48. Paik, S. H. Journal of Chemical Education 2015, 92, 1484. https://doi.org/10.1021/ed500891w