References
- Bertil H (2001) Ion channels of excitable membranes, 3rd Edition, Sinauer Associates, Sunderland
- Lee SY, Maniak PJ, Ingbar DH and O'Grady SM (2003) Adult alveolar epithelial cells express multiple subtypes of voltage-gated K+ channels that are located in apical membrane. Am J Physiol Cell Physiol 284, C1614-C1624 https://doi.org/10.1152/ajpcell.00429.2002
- Pardo LA (2004) Voltage-gated potassium channels in cell proliferation. Physiology (Bethesda) 19, 285-292 https://doi.org/10.1152/physiol.00011.2004
- Leanza L, Romio M, Becker KA et al (2017) Direct pharmacological targeting of a mitochondrial ion channel selectively kills tumor cells in vivo. Cancer Cell 31, 516-531 e510 https://doi.org/10.1016/j.ccell.2017.03.003
- Song MS, Park SM, Park JS et al (2018) Kv3.1 and Kv3.4, are involved in cancer cell migration and invasion. Int J Mol Sci 19, 1061 https://doi.org/10.3390/ijms19041061
- Johnston J, Forsythe ID and Kopp‐Scheinpflug C (2010) SYMPOSIUM REVIEW: Going native: voltage‐gated potassium channels controlling neuronal excitability. J Physiol 588, 3187-3200 https://doi.org/10.1113/jphysiol.2010.191973
- Wulff H, Calabresi PA, Allie R et al (2003) The voltagegated Kv1. 3 K+ channel in effector memory T cells as new target for MS. J Clin Invest 111, 1703-1713 https://doi.org/10.1172/JCI16921
- Pardo LA, Contreras-Jurado C, Zientkowska M, Alves F and Stuhmer W (2005) Role of voltage-gated potassium channels in cancer. J Membr Biol 205, 115-124 https://doi.org/10.1007/s00232-005-0776-1
- Szabo I, Bock J, Grassme H et al (2008) Mitochondrial potassium channel Kv1.3 mediates Bax-induced apoptosis in lymphocytes. Proc Natl Acad Sci U S A 105, 14861-14866 https://doi.org/10.1073/pnas.0804236105
- Huang X and Jan LY (2014) Targeting potassium channels in cancer. J Cell Biol 206, 151-162 https://doi.org/10.1083/jcb.201404136
- Wonderlin WF and Strobl JS (1996) Potassium channels, proliferation and G1 progression. J Membr Biol 154, 91-107 https://doi.org/10.1007/s002329900135
- Comes N, Serrano-Albarras A, Capera J et al (2015) Involvement of potassium channels in the progression of cancer to a more malignant phenotype. Biochim Biophys Acta 1848, 2477-2492 https://doi.org/10.1016/j.bbamem.2014.12.008
- Yang D and Kim J (2020) Emerging role of transient receptor potential (TRP) channels in cancer progression. BMB Rep 53, 125-132 https://doi.org/10.5483/BMBRep.2020.53.3.016
- Bielanska J, Hernandez-Losa J, Moline T et al (2012) Increased voltage-dependent K(+) channel Kv1.3 and Kv1.5 expression correlates with leiomyosarcoma aggressiveness. Oncol Lett 4, 227-230 https://doi.org/10.3892/ol.2012.718
- Liou GY and Storz P (2010) Reactive oxygen species in cancer. Free Radic Res 44, 479-496 https://doi.org/10.3109/10715761003667554
- Kelly RS, Vander Heiden MG, Giovannucci E and Mucci LA (2016) Metabolomic biomarkers of prostate cancer: prediction, diagnosis, progression, prognosis, and recurrence. Cancer Epidemiol Biomarkers Prev 25, 887-906 https://doi.org/10.1158/1055-9965.EPI-15-1223
- Rigau M, Olivan M, Garcia M et al (2013) The present and future of prostate cancer urine biomarkers. Int J Mol Sci 14, 12620-12649 https://doi.org/10.3390/ijms140612620
- Gaudreau P-O, Stagg J, Soulieres D and Saad F (2016) The present and future of biomarkers in prostate cancer: proteomics, genomics, and immunology advancements: supplementary issue: biomarkers and their essential role in the development of personalised therapies (A). Biomark Cancer 8 (Suppl 2), 15-33
- Lima AR, Araujo AM, Pinto J et al (2018) Discrimination between the human prostate normal and cancer cell exometabolome by GC-MS. Sci Rep 8, 1-12 https://doi.org/10.1038/s41598-017-17765-5
- Oto J, Fernandez-Pardo A, Royo M et al (2020) A predictive model for prostate cancer incorporating PSA molecular forms and age. Sci Rep 10, 2463 https://doi.org/10.1038/s41598-020-58836-4
- Rice MA and Stoyanova T (2018) Biomarkers for diagnosis and prognosis of prostate cancer, Prostatectomy, IntechOpen
- Szabo I, Zoratti M and Gulbins E (2010) Contribution of voltage-gated potassium channels to the regulation of apoptosis. FEBS Lett 584, 2049-2056 https://doi.org/10.1016/j.febslet.2010.01.038
- Serrano-Novillo C, Capera J, Colomer-Molera M, Condom E, Ferreres JC and Felipe A (2019) Implication of voltage-gated potassium channels in neoplastic cell proliferation. Cancers (Basel) 11, 287 https://doi.org/10.3390/cancers11030287
- Pardo LA and Stuhmer W (2014) The roles of K(+) channels in cancer. Nat Rev Cancer 14, 39-48 https://doi.org/10.1038/nrc3635
- Jang SH, Choi SY, Ryu PD and Lee SY (2011) Anti-proliferative effect of Kv1.3 blockers in A549 human lung adenocarcinoma in vitro and in vivo. Eur J Pharmacol 651, 26-32 https://doi.org/10.1016/j.ejphar.2010.10.066
- Storz P (2005) Reactive oxygen species in tumor progression. Front Biosci 10, 1881-1896 https://doi.org/10.2741/1667
- Kumar B, Koul S, Khandrika L, Meacham RB and Koul HK (2008) Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype. Cancer Res 68, 1777-1785 https://doi.org/10.1158/0008-5472.CAN-07-5259
- Sahoo N, Hoshi T and Heinemann SH (2014) Oxidative modulation of voltage-gated potassium channels. Antioxid Redox Signal 21, 933-952 https://doi.org/10.1089/ars.2013.5614
- Zafarullah M, Li WQ, Sylvester J and Ahmad M (2003) Molecular mechanisms of N-acetylcysteine actions. Cell Mol Life Sci 60, 6-20 https://doi.org/10.1007/s000180300001
- Meister A (1994) The antioxidant effects of glutathione and ascorbic acid, oxidative stress, cell activation and viral infection, 101-111, Springer
- Lee YJ, Lee DM, Lee CH et al (2011) Suppression of human prostate cancer PC-3 cell growth by N-acetylcysteine involves over-expression of Cyr61. Toxicol In Vitro 25, 199-205 https://doi.org/10.1016/j.tiv.2010.10.020
- Cho S, Chae JS, Shin H et al (2018) Hormetic dose response to L-ascorbic acid as an anti-cancer drug in colorectal cancer cell lines according to SVCT-2 expression. Sci Rep 8, 11372 https://doi.org/10.1038/s41598-018-29386-7
- Yu J and Yang JC (2019) Ion channels as potential redox sensors in lysosomes. Channels 13, 477-482 https://doi.org/10.1080/19336950.2019.1684428
- Ogawa N, Kurokawa T and Mori Y (2016) Sensing of redox status by TRP channels. Cell Calcium 60, 115-122 https://doi.org/10.1016/j.ceca.2016.02.009
- Li F, Abuarab N and Sivaprasadarao A (2016) Reciprocal regulation of actin cytoskeleton remodelling and cell migration by Ca2+ and Zn2+: role of TRPM2 channels. J Cell Sci 129, 2016-2029 https://doi.org/10.1242/jcs.179796
- Hu X, Wei L, Taylor TM et al (2011) Hypoxic preconditioning enhances bone marrow mesenchymal stem cell migration via Kv2.1 channel and FAK activation. Am J Physiol Cell Physiol 301, C362-372 https://doi.org/10.1152/ajpcell.00013.2010
- Subarsky P and Hill RP (2003) The hypoxic tumour microenvironment and metastatic progression. Clin Exp Metastasis 20, 237-250 https://doi.org/10.1023/A:1022939318102
- Tochhawng L, Deng S, Pervaiz S and Yap CT (2013) Redox regulation of cancer cell migration and invasion. Mitochondrion 13, 246-253 https://doi.org/10.1016/j.mito.2012.08.002
- Hurd TR, DeGennaro M and Lehmann R (2012) Redox regulation of cell migration and adhesion. Trends Cell Biol 22, 107-115 https://doi.org/10.1016/j.tcb.2011.11.002