DOI QR코드

DOI QR Code

Genome editing of immune cells using CRISPR/Cas9

  • Kim, Segi (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Hupperetz, Cedric (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Lim, Seongjoon (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Chan Hyuk (Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2020.10.21
  • Accepted : 2020.11.26
  • Published : 2021.01.31

Abstract

The ability to read, write, and edit genomic information in living organisms can have a profound impact on research, health, economic, and environmental issues. The CRISPR/Cas system, recently discovered as an adaptive immune system in prokaryotes, has revolutionized the ease and throughput of genome editing in mammalian cells and has proved itself indispensable to the engineering of immune cells and identification of novel immune mechanisms. In this review, we summarize the CRISPR/Cas9 system and the history of its discovery and optimization. We then focus on engineering T cells and other types of immune cells, with emphasis on therapeutic applications. Last, we describe the different modifications of Cas9 and their recent applications in the genome-wide screening of immune cells.

Keywords

References

  1. Mardis ER (2017) DNA sequencing technologies: 2006-2016. Nat Protoc 12, 213-218 https://doi.org/10.1038/nprot.2016.182
  2. Zhang W, Mitchell LA, Bader JS and Boeke JD (2020) Synthetic genomes. Annu Rev Biochem 89, 77-101 https://doi.org/10.1146/annurev-biochem-013118-110704
  3. Pickar-Oliver A and Gersbach CA (2019) The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Biol 20, 490-507 https://doi.org/10.1038/s41580-019-0131-5
  4. Sander JD and Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32, 347-355 https://doi.org/10.1038/nbt.2842
  5. Anzalone AV, Koblan LW and Liu DR (2020) Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 38, 824-844 https://doi.org/10.1038/s41587-020-0561-9
  6. Tong S, Moyo B, Lee CM, Leong K and Bao G (2019) Engineered materials for in vivo delivery of genome-editing machinery. Nat Rev Mater 4, 726-737 https://doi.org/10.1038/s41578-019-0145-9
  7. Ishino Y, Shinagawa H, Makino K, Amemura M and Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme convertsion in Escherichia coli, and identification of the gene product. J Bacteriol 169, 5429-5433 https://doi.org/10.1128/jb.169.12.5429-5433.1987
  8. Jansen R, Embden JD, Gaastra W and Schouls LM (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43, 1565-1575 https://doi.org/10.1046/j.1365-2958.2002.02839.x
  9. Mojica FJ, Diez-Villasenor C, Garcia-Martinez J and Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60, 174-182 https://doi.org/10.1007/s00239-004-0046-3
  10. Barrangou R, Fremaux C, Deveau H et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709-1712 https://doi.org/10.1126/science.1138140
  11. Makarova KS, Wolf YI, Iranzo J et al (2020) Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 18, 67-83 https://doi.org/10.1038/s41579-019-0299-x
  12. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA and Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821 https://doi.org/10.1126/science.1225829
  13. Mojica FJM, Diez-Villasenor C, Garcia-Martinez J and Almendros C (2009) Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology (Reading) 155, 733-740 https://doi.org/10.1099/mic.0.023960-0
  14. Wang H, La Russa M and Qi LS (2016) CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem 85, 227-264 https://doi.org/10.1146/annurev-biochem-060815-014607
  15. Ren J and Zhao Y (2017) Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9. Protein Cell 8, 634-643 https://doi.org/10.1007/s13238-017-0410-x
  16. Kim S, Kim D, Cho SW, Kim J and Kim JS (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24, 1012-1019 https://doi.org/10.1101/gr.171322.113
  17. Hendel A, Bak RO, Clark JT et al (2015) Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat Biotechnol 33, 985-989 https://doi.org/10.1038/nbt.3290
  18. Hornung V and Latz E (2010) Intracellular DNA recognition. Nat Rev Immunol 10, 123-130 https://doi.org/10.1038/nri2690
  19. Geering B and Fussenegger M (2015) Synthetic immunology: modulating the human immune system. Trends Biotechnol 33, 65-79 https://doi.org/10.1016/j.tibtech.2014.10.006
  20. Wei SC, Duffy CR and Allison JP (2018) Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov 8, 1069-1086 https://doi.org/10.1158/2159-8290.CD-18-0367
  21. Klinger M, Benjamin J, Kischel R, Stienen S and Zugmaier G (2016) Harnessing T cells to fight cancer with BiTE(R) antibody constructs--past developments and future directions. Immunol Rev 270, 193-208 https://doi.org/10.1111/imr.12393
  22. Guedan S, Ruella M and June CH (2019) Emerging cellular therapies for cancer. Annu Rev Immunol 37, 145-171 https://doi.org/10.1146/annurev-immunol-042718-041407
  23. Schuster SJ, Svoboda J, Chong EA et al (2017) Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med 377, 2545-2554 https://doi.org/10.1056/NEJMoa1708566
  24. Neelapu SS, Locke FL, Bartlett NL et al (2017) Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med 377, 2531-2544 https://doi.org/10.1056/NEJMoa1707447
  25. Maude SL, Laetsch TW, Buechner J et al (2018) Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 378, 439-448 https://doi.org/10.1056/NEJMoa1709866
  26. Blank CU, Haining WN, Held W et al (2019) Defining 'T cell exhaustion'. Nat Rev Immunol 19, 665-674 https://doi.org/10.1038/s41577-019-0221-9
  27. Wherry EJ and Kurachi M (2015) Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol 15, 486-499 https://doi.org/10.1038/nri3862
  28. Choi BD, Yu X, Castano AP et al (2019) CRISPR-Cas9 disruption of PD-1 enhances activity of universal EGFRvIII CAR T cells in a preclinical model of human glioblastoma. J Immunother Cancer 7, 304 https://doi.org/10.1186/s40425-019-0806-7
  29. Hu W, Zi Z, Jin Y et al (2019) CRISPR/Cas9-mediated PD-1 disruption enhances human mesothelin-targeted CAR T cell effector functions. Cancer Immunol Immunother 68, 365-377 https://doi.org/10.1007/s00262-018-2281-2
  30. Rupp LJ, Schumann K, Roybal KT et al (2017) CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci Rep 7, 737 https://doi.org/10.1038/s41598-017-00462-8
  31. Su S, Hu B, Shao J et al (2016) CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients. Sci Rep 6, 20070 https://doi.org/10.1038/srep20070
  32. Stadtmauer EA, Fraietta JA, Davis MM et al (2020) CRISPR-engineered T cells in patients with refractory cancer. Science 367, eaba7365 https://doi.org/10.1126/science.aba7365
  33. Yang L, Pang Y and Moses HL (2010) TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol 31, 220-227 https://doi.org/10.1016/j.it.2010.04.002
  34. Tang N, Cheng C, Zhang X et al (2020) TGF-beta inhibition via CRISPR promotes the long-term efficacy of CAR T cells against solid tumors. JCI Insight 5, e133977 https://doi.org/10.1172/jci.insight.133977
  35. Yamada A, Arakaki R, Saito M, Kudo Y and Ishimaru N (2017) Dual role of Fas/FasL-mediated signal in peripheral immune tolerance. Front Immunol 8, 403 https://doi.org/10.3389/fimmu.2017.00403
  36. Ren J, Zhang X, Liu X et al (2017) A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget 8, 17002-17011 https://doi.org/10.18632/oncotarget.15218
  37. Riese MJ, Moon EK, Johnson BD and Albelda SM (2016) Diacylglycerol kinases (DGKs): novel targets for improving T cell activity in cancer. Front Cell Dev Biol 4, 108
  38. Jung IY, Kim YY, Yu HS, Lee M, Kim S and Lee J (2018) CRISPR/Cas9-mediated knockout of DGK improves antitumor activities of human T cells. Cancer Res 78, 4692-4703 https://doi.org/10.1158/0008-5472.CAN-18-0030
  39. Norelli M, Camisa B, Barbiera G et al (2018) Monocytederived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat Med 24, 739-748 https://doi.org/10.1038/s41591-018-0036-4
  40. Teachey DT, Lacey SF, Shaw PA et al (2016) Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discov 6, 664-679 https://doi.org/10.1158/2159-8290.CD-16-0040
  41. Sterner RM, Sakemura R, Cox MJ et al (2019) GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood 133, 697-709 https://doi.org/10.1182/blood-2018-10-881722
  42. Alcantara M, Tesio M, June CH and Houot R (2018) CAR T-cells for T-cell malignancies: challenges in distinguishing between therapeutic, normal, and neoplastic T-cells. Leukemia 32, 2307-2315 https://doi.org/10.1038/s41375-018-0285-8
  43. Gomes-Silva D, Srinivasan M, Sharma S et al (2017) CD7-edited T cells expressing a CD7-specific CAR for the therapy of T-cell malignancies. Blood 130, 285-296 https://doi.org/10.1182/blood-2017-01-761320
  44. Ren J, Liu X, Fang C, Jiang S, June CH and Zhao Y (2017) Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res 23, 2255-2266 https://doi.org/10.1158/1078-0432.CCR-16-1300
  45. Morton LT, Reijmers RM, Wouters AK et al (2020) Simultaneous deletion of endogenous TCRalphabeta for TCR gene therapy creates an improved and safe cellular therapeutic. Mol Ther 28, 64-74 https://doi.org/10.1016/j.ymthe.2019.10.001
  46. Maher J, Brentjens RJ, Gunset G, Riviere I and Sadelain M (2002) Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta /CD28 receptor. Nat Biotechnol 20, 70-75 https://doi.org/10.1038/nbt0102-70
  47. Milone MC, Fish JD, Carpenito C et al (2009) Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther 17, 1453-1464 https://doi.org/10.1038/mt.2009.83
  48. Uren AG, Kool J, Berns A and van Lohuizen M (2005) Retroviral insertional mutagenesis: past, present and future. Oncogene 24, 7656-7672 https://doi.org/10.1038/sj.onc.1209043
  49. Niederer HA and Bangham CR (2014) Integration site and clonal expansion in human chronic retroviral infection and gene therapy. Viruses 6, 4140-4164 https://doi.org/10.3390/v6114140
  50. Woods NB, Muessig A, Schmidt M et al (2003) Lentiviral vector transduction of NOD/SCID repopulating cells results in multiple vector integrations per transduced cell: risk of insertional mutagenesis. Blood 101, 1284-1289 https://doi.org/10.1182/blood-2002-07-2238
  51. Eyquem J, Mansilla-Soto J, Giavridis T et al (2017) Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543, 113-117 https://doi.org/10.1038/nature21405
  52. Wright JF (2008) Manufacturing and characterizing AAV-based vectors for use in clinical studies. Gene Ther 15, 840-848 https://doi.org/10.1038/gt.2008.65
  53. Roth TL, Puig-Saus C, Yu R et al (2018) Reprogramming human T cell function and specificity with non-viral genome targeting. Nature 559, 405-409 https://doi.org/10.1038/s41586-018-0326-5
  54. Nguyen DN, Roth TL, Li PJ et al (2020) Polymer-stabilized Cas9 nanoparticles and modified repair templates increase genome editing efficiency. Nat Biotechnol 38, 44-49 https://doi.org/10.1038/s41587-019-0325-6
  55. Roth TL, Li PJ, Blaeschke F et al (2020) Pooled Knockin Targeting for Genome Engineering of Cellular Immunotherapies. Cell 181, 728-744 e721 https://doi.org/10.1016/j.cell.2020.03.039
  56. Tothova Z, Krill-Burger JM, Popova KD et al (2017) Multiplex CRISPR/Cas9-based genome editing in human hematopoietic stem cells models clonal hematopoiesis and myeloid neoplasia. Cell Stem Cell 21, 547-555.e8 https://doi.org/10.1016/j.stem.2017.07.015
  57. Wagenblast E, Azkanaz M, Smith SA et al (2019) Functional profiling of single CRISPR/Cas9-edited human long-term hematopoietic stem cells. Nat Commun 10, 4730 https://doi.org/10.1038/s41467-019-12726-0
  58. Cavazzana M, Antoniani C and Miccio A (2017) Gene therapy for beta-hemoglobinopathies. Mol Ther 25, 1142-1154 https://doi.org/10.1016/j.ymthe.2017.03.024
  59. Dever DP, Bak RO, Reinisch A et al (2016) CRISPR/Cas9 beta-globin gene targeting in human haematopoietic stem cells. Nature 539, 384-389 https://doi.org/10.1038/nature20134
  60. Wu Y, Zeng J, Roscoe BP et al (2019) Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nat Med 25, 776-783 https://doi.org/10.1038/s41591-019-0401-y
  61. Zeng J, Wu Y, Ren C et al (2020) Therapeutic base editing of human hematopoietic stem cells. Nat Med 26, 535-541 https://doi.org/10.1038/s41591-020-0790-y
  62. Traxler EA, Yao Y, Wang YD et al (2016) A genome-editing strategy to treat beta-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition. Nat Med 22, 987-990 https://doi.org/10.1038/nm.4170
  63. Weber L, Frati G, Felix T et al (2020) Editing a gammaglobin repressor binding site restores fetal hemoglobin synthesis and corrects the sickle cell disease phenotype. Sci Adv 6, eaay9392 https://doi.org/10.1126/sciadv.aay9392
  64. Hacein-Bey-Abina S, Garrigue A, Wang GP et al (2008) Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 118, 3132-3142 https://doi.org/10.1172/JCI35700
  65. Woods NB, Bottero V, Schmidt M, von Kalle C and Verma IM (2006) Gene therapy: therapeutic gene causing lymphoma. Nature 440, 1123 https://doi.org/10.1038/4401123a
  66. Pavel-Dinu M, Wiebking V, Dejene BT et al (2019) Gene correction for SCID-X1 in long-term hematopoietic stem cells. Nat Commun 10, 1634 https://doi.org/10.1038/s41467-019-09614-y
  67. Holt N, Wang J, Kim K et al (2010) Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol 28, 839-847 https://doi.org/10.1038/nbt.1663
  68. Shi B, Li J, Shi X et al (2017) TALEN-mediated knockout of CCR5 confers protection against infection of human immunodeficiency virus. J Acquir Immune Defic Syndr 74, 229-241 https://doi.org/10.1097/QAI.0000000000001190
  69. Xu L, Yang H, Gao Y et al (2017) CRISPR/Cas9-mediated CCR5 ablation in human hematopoietic stem/progenitor cells confers HIV-1 resistance in vivo. Mol Ther 25, 1782-1789 https://doi.org/10.1016/j.ymthe.2017.04.027
  70. Xu L, Wang J, Liu Y et al (2019) CRISPR-edited stem cells in a patient with HIV and acute lymphocytic leukemia. N Engl J Med 381, 1240-1247 https://doi.org/10.1056/NEJMoa1817426
  71. Hartweger H, McGuire AT, Horning M et al (2019) HIV-specific humoral immune responses by CRISPR/Cas9-edited B cells. J Exp Med 216, 1301-1310 https://doi.org/10.1084/jem.20190287
  72. Moffett HF, Harms CK, Fitzpatrick KS, Tooley MR, Boon-yaratanakornkit J and Taylor JJ (2019) B cells engineered to express pathogen-specific antibodies protect against infection. Sci Immunol 4, eaax0644 https://doi.org/10.1126/sciimmunol.aax0644
  73. McManus MT and Sharp PA (2002) Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 3, 737-747 https://doi.org/10.1038/nrg908
  74. Jackson AL and Linsley PS (2010) Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov 9, 57-67 https://doi.org/10.1038/nrd3010
  75. Munoz DM, Cassiani PJ, Li L et al (2016) CRISPR screens provide a comprehensive assessment of cancer vulnerabilities but generate false-positive hits for highly amplified genomic regions. Cancer Discov 6, 900-913 https://doi.org/10.1158/2159-8290.CD-16-0178
  76. Tian X, Gu T, Patel S, Bode AM, Lee MH and Dong Z (2019) CRISPR/Cas9 - an evolving biological tool kit for cancer biology and oncology. NPJ Precis Oncol 3, 8 https://doi.org/10.1038/s41698-019-0080-7
  77. Wang T, Wei JJ, Sabatini DM and Lander ES (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science 343, 80-84 https://doi.org/10.1126/science.1246981
  78. Mali P, Aach J, Stranges PB et al (2013) CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol 31, 833-838 https://doi.org/10.1038/nbt.2675
  79. Perez-Pinera P, Kocak DD, Vockley CM et al (2013) RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods 10, 973-976 https://doi.org/10.1038/nmeth.2600
  80. Konermann S, Brigham MD, Trevino AE et al (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583-588 https://doi.org/10.1038/nature14136
  81. Zalatan JG, Lee ME, Almeida R et al (2015) Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160, 339-350 https://doi.org/10.1016/j.cell.2014.11.052
  82. Gilbert LA, Larson MH, Morsut L et al (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442-451 https://doi.org/10.1016/j.cell.2013.06.044
  83. McDade JR, Waxmonsky NC, Swanson LE and Fan M (2016) Practical considerations for using pooled lentiviral CRISPR libraries. Curr Protoc Mol Biol 115, 31.5.1-31.5.13
  84. Joung J, Konermann S, Gootenberg JS et al (2017) Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat Protoc 12, 828-863 https://doi.org/10.1038/nprot.2017.016
  85. Park RJ, Wang T, Koundakjian D et al (2017) A genomewide CRISPR screen identifies a restricted set of HIV host dependency factors. Nat Genet 49, 193-203 https://doi.org/10.1038/ng.3741
  86. Ait-Ammar A, Kula A, Darcis G et al (2019) Current status of latency reversing agents facing the heterogeneity of HIV-1 cellular and tissue reservoirs. Front Microbiol 10, 3060 https://doi.org/10.3389/fmicb.2019.03060
  87. Rathore A, Iketani S, Wang P, Jia M, Sahi V and Ho DD (2020) CRISPR-based gene knockout screens reveal deubiquitinases involved in HIV-1 latency in two Jurkat cell models. Sci Rep 10, 5350 https://doi.org/10.1038/s41598-020-62375-3
  88. Manganaro L, Pache L, Herrmann T et al (2014) Tumor suppressor cylindromatosis (CYLD) controls HIV transcription in an NF-kappaB-dependent manner. J Virol 88, 7528-7540 https://doi.org/10.1128/JVI.00239-14
  89. Pan D, Kobayashi A, Jiang P et al (2018) A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science 359, 770-775 https://doi.org/10.1126/science.aao1710
  90. Kadoch C and Crabtree GR (2015) Mammalian SWI/SNF chromatin remodeling complexes and cancer: Mechanistic insights gained from human genomics. Sci Adv 1, e1500447 https://doi.org/10.1126/sciadv.1500447
  91. Singh N, Lee YG, Shestova O et al (2020) Impaired death receptor signaling in leukemia causes antigen- independent resistance by inducing CAR T-cell dysfunction. Cancer Discov 10, 552-567 https://doi.org/10.1158/2159-8290.cd-19-0813
  92. Cortez JT, Montauti E, Shifrut E et al (2020) CRISPR screen in regulatory T cells reveals modulators of Foxp3. Nature 582, 416-420 https://doi.org/10.1038/s41586-020-2246-4
  93. Henriksson J (2019) CRISPR screening in single cells. Methods Mol Biol 1979, 395-406 https://doi.org/10.1007/978-1-4939-9240-9_23
  94. Klein AM, Mazutis L, Akartuna I et al (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187-1201 https://doi.org/10.1016/j.cell.2015.04.044
  95. Macosko EZ, Basu A, Satija R et al (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202-1214 https://doi.org/10.1016/j.cell.2015.05.002
  96. Dixit A, Parnas O, Li B et al (2016) Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853-1866. e17 https://doi.org/10.1016/j.cell.2016.11.038
  97. Xie S, Duan J, Li B, Zhou P and Hon GC (2017) Multiplexed engineering and analysis of combinatorial enhancer activity in single cells. Mol Cell 66, 285-299.e5 https://doi.org/10.1016/j.molcel.2017.03.007
  98. Jaitin DA, Weiner A, Yofe I et al (2016) Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-Seq. Cell 167, 1883-1896.e15 https://doi.org/10.1016/j.cell.2016.11.039
  99. Datlinger P, Rendeiro AF, Schmidl C et al (2017) Pooled CRISPR screening with single-cell transcriptome readout. Nat Methods 14, 297-301 https://doi.org/10.1038/nmeth.4177
  100. Adamson B, Norman TM, Jost M et al (2016) A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167, 1867-1882.e21 https://doi.org/10.1016/j.cell.2016.11.048
  101. McFaline-Figueroa JL, Hill AJ, Qiu X, Jackson D, Shendure J and Trapnell C (2019) A pooled single-cell genetic screen identifies regulatory checkpoints in the continuum of the epithelial-to-mesenchymal transition. Nat Genet 51, 1389-1398 https://doi.org/10.1038/s41588-019-0489-5
  102. Chopin M, Lun AT, Zhan Y et al (2019) Transcription factor PU.1 promotes conventional dendritic cell identity and function via induction of transcriptional regulator DC-SCRIPT. Immunity 50, 77-90.e5 https://doi.org/10.1016/j.immuni.2018.11.010
  103. Haapaniemi E, Botla S, Persson J, Schmierer B and Taipale J (2018) CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med 24, 927-930 https://doi.org/10.1038/s41591-018-0049-z
  104. Cullot G, Boutin J, Toutain J et al (2019) CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations. Nat Commun 10, 1136 https://doi.org/10.1038/s41467-019-09006-2
  105. Webber BR, Lonetree CL, Kluesner MG et al (2019) Highly efficient multiplex human T cell engineering without double-strand breaks using Cas9 base editors. Nature Communications 10, 5222 https://doi.org/10.1038/s41467-019-13007-6
  106. Strecker J, Ladha A, Gardner Z et al (2019) RNA-guided DNA insertion with CRISPR-associated transposases. Science 365, 48-53 https://doi.org/10.1126/science.aax9181
  107. Klompe SE, Vo PLH, Halpin-Healy TS and Sternberg SH (2019) Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration. Nature 571, 219-225 https://doi.org/10.1038/s41586-019-1323-z