References
- Chen DS and Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1-10 https://doi.org/10.1016/j.immuni.2013.07.012
- Fridman WH, Pages F, Sautes-Fridman C and Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12, 298-306 https://doi.org/10.1038/nrc3245
- Menetrier-Caux C, Ray-Coquard I, Blay JY and Caux C (2019) Lymphopenia in cancer patients and its effects on response to immunotherapy: an opportunity for combination with cytokines? J Immunother Cancer 7, 85 https://doi.org/10.1186/s40425-019-0549-5
- Leonard WJ, Lin JX and O'Shea JJ (2019) The gammac family of cytokines: basic biology to therapeutic ramifications. Immunity 50, 832-850 https://doi.org/10.1016/j.immuni.2019.03.028
- Morgan DA, Ruscetti FW and Gallo R (1976) Selective in vitro growth of T lymphocytes from normal human bone marrows. Science 193, 1007-1008 https://doi.org/10.1126/science.181845
- Boyman O and Sprent J (2012) The role of interleukin-2 during homeostasis and activation of the immune system. Nat Rev Immunol 12, 180-190 https://doi.org/10.1038/nri3156
- Wang X, Rickert M and Garcia KC (2005) Structure of the quaternary complex of interleukin-2 with its alpha, beta, and gammac receptors. Science 310, 1159-1163 https://doi.org/10.1126/science.1117893
- Zhang X, Sun S, Hwang I, Tough DF and Sprent J (1998) Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity 8, 591-599 https://doi.org/10.1016/S1074-7613(00)80564-6
- Boyman O, Kovar M, Rubinstein MP, Surh CD and Sprent J (2006) Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science 311, 1924-1927 https://doi.org/10.1126/science.1122927
- Sakaguchi S (2004) Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22, 531-562 https://doi.org/10.1146/annurev.immunol.21.120601.141122
- Liao W, Lin JX, Wang L, Li P and Leonard WJ (2011) Modulation of cytokine receptors by IL-2 broadly regulates differentiation into helper T cell lineages. Nat Immunol 12, 551-559 https://doi.org/10.1038/ni.2030
- Yang XP, Ghoreschi K, Steward-Tharp SM et al (2011) Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nat Immunol 12, 247-254 https://doi.org/10.1038/ni.1995
- Liao W, Spolski R, Li P et al (2014) Opposing actions of IL-2 and IL-21 on Th9 differentiation correlate with their differential regulation of BCL6 expression. Proc Natl Acad Sci U S A 111, 3508-3513 https://doi.org/10.1073/pnas.1301138111
- Laurence A, Tato CM, Davidson TS et al (2007) Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 26, 371-381 https://doi.org/10.1016/j.immuni.2007.02.009
- Ballesteros-Tato A, Leon B, Graf BA et al (2012) Interleukin-2 inhibits germinal center formation by limiting T follicular helper cell differentiation. Immunity 36, 847-856 https://doi.org/10.1016/j.immuni.2012.02.012
- Sadlack B, Lohler J, Schorle H et al (1995) Generalized autoimmune disease in interleukin-2-deficient mice is triggered by an uncontrolled activation and proliferation of CD4+ T cells. Eur J Immunol 25, 3053-3059 https://doi.org/10.1002/eji.1830251111
- Willerford DM, Chen J, Ferry JA, Davidson L, Ma A and Alt FW (1995) Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity 3, 521-530 https://doi.org/10.1016/1074-7613(95)90180-9
- Suzuki H, Kundig TM, Furlonger C et al (1995) Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor beta. Science 268, 1472-1476 https://doi.org/10.1126/science.7770771
- Almeida AR, Legrand N, Papiernik M and Freitas AA (2002) Homeostasis of peripheral CD4+ T cells: IL-2R alpha and IL-2 shape a population of regulatory cells that controls CD4+ T cell numbers. J Immunol 169, 4850-4860 https://doi.org/10.4049/jimmunol.169.9.4850
- Malek TR, Yu A, Vincek V, Scibelli P and Kong L (2002) CD4 regulatory T cells prevent lethal autoimmunity in IL-2 Rbeta-deficient mice. Implications for the nonredundant function of IL-2. Immunity 17, 167-178 https://doi.org/10.1016/S1074-7613(02)00367-9
- Fontenot JD, Rasmussen JP, Gavin MA and Rudensky AY (2005) A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol 6, 1142-1151 https://doi.org/10.1038/ni1263
- Kalia V, Sarkar S, Subramaniam S, Haining WN, Smith KA and Ahmed R (2010) Prolonged interleukin-2Ralpha expression on virus-specific CD8+ T cells favors terminal-effector differentiation in vivo. Immunity 32, 91-103 https://doi.org/10.1016/j.immuni.2009.11.010
- Pipkin ME, Sacks JA, Cruz-Guilloty F, Lichtenheld MG, Bevan MJ and Rao A (2010) Interleukin-2 and inflammation induce distinct transcriptional programs that promote the differentiation of effector cytolytic T cells. Immunity 32, 79-90 https://doi.org/10.1016/j.immuni.2009.11.012
- Lenardo M, Chan KM, Hornung F et al (1999) Mature T lymphocyte apoptosis--immune regulation in a dynamic and unpredictable antigenic environment. Annu Rev Immunol 17, 221-253 https://doi.org/10.1146/annurev.immunol.17.1.221
- Rosenberg SA, Lotze MT, Muul LM et al (1985) Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med 313, 1485-1492 https://doi.org/10.1056/NEJM198512053132327
- Rosenberg SA, Lotze MT, Aebersold PM, Linehan WM, Seipp CA and White DE (1989) Experience with the use of high-dose interleukin-2 in the treatment of 652 cancer patients. Ann Surg 210, 474-485 https://doi.org/10.1097/00000658-198910000-00008
- Rosenberg SA, Yang JC, Topalian SL et al (1994) Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2. JAMA 271, 907-913 https://doi.org/10.1001/jama.1994.03510360033032
- Fyfe G, Fisher RI, Rosenberg SA, Sznol M, Parkinson DR and Louie AC (1995) Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J Clin Oncol 13, 688-696 https://doi.org/10.1200/JCO.1995.13.3.688
- Atkins MB, Lotze MT, Dutcher JP et al (1999) High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 17, 2105-2116 https://doi.org/10.1200/JCO.1999.17.7.2105
- Caligiuri MA, Murray C, Robertson MJ et al (1993) Selective modulation of human natural killer cells in vivo after prolonged infusion of low dose recombinant interleukin 2. J Clin Invest 91, 123-132 https://doi.org/10.1172/JCI116161
- Caligiuri MA, Murray C, Soiffer RJ et al (1991) Extended continuous infusion low-dose recombinant interleukin-2 in advanced cancer: prolonged immunomodulation without significant toxicity. J Clin Oncol 9, 2110-2119 https://doi.org/10.1200/JCO.1991.9.12.2110
- Soiffer RJ, Murray C, Shapiro C et al (1996) Expansion and manipulation of natural killer cells in patients with metastatic cancer by low-dose continuous infusion and intermittent bolus administration of interleukin 2. Clin Cancer Res 2, 493-499
- Fehniger TA, Bluman EM, Porter MM et al (2000) Potential mechanisms of human natural killer cell expansion in vivo during low-dose IL-2 therapy. J Clin Invest 106, 117-124 https://doi.org/10.1172/JCI6218
- Wrangle JM, Patterson A, Johnson CB et al (2018) IL-2 and beyond in cancer immunotherapy. J Interferon Cytokine Res 38, 45-68 https://doi.org/10.1089/jir.2017.0101
- Krieg C, Letourneau S, Pantaleo G and Boyman O (2010) Improved IL-2 immunotherapy by selective stimulation of IL-2 receptors on lymphocytes and endothelial cells. Proc Natl Acad Sci U S A 107, 11906-11911 https://doi.org/10.1073/pnas.1002569107
- Sim GC, Martin-Orozco N, Jin L et al (2014) IL-2 therapy promotes suppressive ICOS+ Treg expansion in melanoma patients. J Clin Invest 124, 99-110 https://doi.org/10.1172/JCI46266
- Levin AM, Bates DL, Ring AM et al (2012) Exploiting a natural conformational switch to engineer an interleukin-2 'superkine'. Nature 484, 529-533 https://doi.org/10.1038/nature10975
- Ardolino M, Azimi CS, Iannello A et al (2014) Cytokine therapy reverses NK cell anergy in MHC-deficient tumors. J Clin Invest 124, 4781-4794 https://doi.org/10.1172/JCI74337
- Mortara L, Balza E, Bruno A, Poggi A, Orecchia P and Carnemolla B (2018) Anti-cancer therapies employing IL-2 cytokine tumor targeting: contribution of innate, adaptive and immunosuppressive cells in the anti-tumor efficacy. Front Immunol 9, 2905 https://doi.org/10.3389/fimmu.2018.02905
- Ishihara J, Ishihara A, Sasaki K et al (2019) Targeted antibody and cytokine cancer immunotherapies through collagen affinity. Sci Transl Med 11, eaau3259 https://doi.org/10.1126/scitranslmed.aau3259
- Mostbock S (2009) Cytokine/Antibody complexes: an emerging class of immunostimulants. Curr Pharm Des 15, 809-825 https://doi.org/10.2174/138161209787582174
- Kamimura D, Sawa Y, Sato M, Agung E, Hirano T and Murakami M (2006) IL-2 in vivo activities and antitumor efficacy enhanced by an anti-IL-2 mAb. J Immunol 177, 306-314 https://doi.org/10.4049/jimmunol.177.1.306
- Jin GH, Hirano T and Murakami M (2008) Combination treatment with IL-2 and anti-IL-2 mAbs reduces tumor metastasis via NK cell activation. Int Immunol 20, 783-789 https://doi.org/10.1093/intimm/dxn036
- Roopenian DC and Akilesh S (2007) FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol 7, 715-725 https://doi.org/10.1038/nri2155
- Zhu EF, Gai SA, Opel CF et al (2015) Synergistic innate and adaptive immune response to combination immunotherapy with anti-tumor antigen antibodies and extended serum half-life IL-2. Cancer Cell 27, 489-501 https://doi.org/10.1016/j.ccell.2015.03.004
- Sun Z, Ren Z, Yang K et al (2019) A next-generation tumor-targeting IL-2 preferentially promotes tumor-infiltrating CD8(+) T-cell response and effective tumor control. Nat Commun 10, 3874 https://doi.org/10.1038/s41467-019-11782-w
- Yang JC, Topalian SL, Schwartzentruber DJ et al (1995) The use of polyehylene glycol-modified interleukin-2 (PEG-IL-2) in the treatment of patients with metastatic renal cell carcinoma and melanoma. Cancer 76, 687-694 https://doi.org/10.1002/1097-0142(19950815)76:4<687::AID-CNCR2820760424>3.0.CO;2-M
- Charych DH, Hoch U, Langowski JL et al (2016) NKTR-214, an engineered cytokine with biased IL2 receptor binding, increased tumor exposure, and marked efficacy in mouse tumor Models. Clin Cancer Res 22, 680-690 https://doi.org/10.1158/1078-0432.CCR-15-1631
- Sharma M, Khong H, Fa'ak F et al (2020) Bempegaldesleukin selectively depletes intratumoral Tregs and potentiates T cell-mediated cancer therapy. Nat Commun 11, 661 https://doi.org/10.1038/s41467-020-14471-1
- Mackall CL, Fry TJ and Gress RE (2011) Harnessing the biology of IL-7 for therapeutic application. Nat Rev Immunol 11, 330-342 https://doi.org/10.1038/nri2970
- Link A, Vogt TK, Favre S et al (2007) Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat Immunol 8, 1255-1265 https://doi.org/10.1038/ni1513
- Kim GY, Hong C and Park JH (2011) Seeing is believing: illuminating the source of in vivo interleukin-7. Immune Netw 11, 1-10 https://doi.org/10.4110/in.2011.11.1.1
- Guimond M, Veenstra RG, Grindler DJ et al (2009) Interleukin 7 signaling in dendritic cells regulates the homeostatic proliferation and niche size of CD4+ T cells. Nat Immunol 10, 149-157 https://doi.org/10.1038/ni.1695
- Al-Shami A, Spolski R, Kelly J et al (2004) A role for thymic stromal lymphopoietin in CD4(+) T cell development. J Exp Med 200, 159-168 https://doi.org/10.1084/jem.20031975
- Peschon JJ, Morrissey PJ, Grabstein KH et al (1994) Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J Exp Med 180, 1955-1960 https://doi.org/10.1084/jem.180.5.1955
- von Freeden-Jeffry U, Vieira P, Lucian LA, McNeil T, Burdach SE and Murray R (1995) Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J Exp Med 181, 1519-1526 https://doi.org/10.1084/jem.181.4.1519
- Clark MR, Mandal M, Ochiai K and Singh H (2014) Orchestrating B cell lymphopoiesis through interplay of IL-7 receptor and pre-B cell receptor signalling. Nat Rev Immunol 14, 69-80 https://doi.org/10.1038/nri3570
- Puel A, Ziegler SF, Buckley RH and Leonard WJ (1998) Defective IL7R expression in T(-)B(+)NK(+) severe combined immunodeficiency. Nat Genet 20, 394-397 https://doi.org/10.1038/3877
- Mazzucchelli R and Durum SK (2007) Interleukin-7 receptor expression: intelligent design. Nat Rev Immunol 7, 144-154 https://doi.org/10.1038/nri2023
- Kondo M, Akashi K, Domen J, Sugamura K and Weissman IL (1997) Bcl-2 rescues T lymphopoiesis, but not B or NK cell development, in common gamma chain-deficient mice. Immunity 7, 155-162 https://doi.org/10.1016/S1074-7613(00)80518-X
- Akashi K, Kondo M, von Freeden-Jeffry U, Murray R and Weissman IL (1997) Bcl-2 rescues T lymphopoiesis in interleukin-7 receptor-deficient mice. Cell 89, 1033-1041 https://doi.org/10.1016/S0092-8674(00)80291-3
- Maraskovsky E, O'Reilly LA, Teepe M, Corcoran LM, Peschon JJ and Strasser A (1997) Bcl-2 can rescue T lymphocyte development in interleukin-7 receptor-deficient mice but not in mutant rag-1(-/-) mice. Cell 89, 1011-1019 https://doi.org/10.1016/S0092-8674(00)80289-5
- Pellegrini M, Bouillet P, Robati M, Belz GT, Davey GM and Strasser A (2004) Loss of Bim increases T cell production and function in interleukin 7 receptor-deficient mice. J Exp Med 200, 1189-1195 https://doi.org/10.1084/jem.20041328
- Khaled AR, Li WQ, Huang J et al (2002) Bax deficiency partially corrects interleukin-7 receptor alpha deficiency. Immunity 17, 561-573 https://doi.org/10.1016/S1074-7613(02)00450-8
- Boudil A, Matei IR, Shih HY et al (2015) IL-7 coordinates proliferation, differentiation and Tcra recombination during thymocyte beta-selection. Nat Immunol 16, 397-405 https://doi.org/10.1038/ni.3122
- Moore TA, von Freeden-Jeffry U, Murray R and Zlotnik A (1996) Inhibition of gamma delta T cell development and early thymocyte maturation in IL-7 -/- mice. J Immunol 157, 2366-2373
- Shitara S, Hara T, Liang B et al (2013) IL-7 produced by thymic epithelial cells plays a major role in the development of thymocytes and TCRgammadelta+ intraepithelial lymphocytes. J Immunol 190, 6173-6179 https://doi.org/10.4049/jimmunol.1202573
- Vosshenrich CA, Garcia-Ojeda ME, Samson-Villeger SI et al (2006) A thymic pathway of mouse natural killer cell development characterized by expression of GATA-3 and CD127. Nat Immunol 7, 1217-1224 https://doi.org/10.1038/ni1395
- Vogt TK, Link A, Perrin J, Finke D and Luther SA (2009) Novel function for interleukin-7 in dendritic cell development. Blood 113, 3961-3968 https://doi.org/10.1182/blood-2008-08-176321
- Soares MV, Borthwick NJ, Maini MK, Janossy G, Salmon M and Akbar AN (1998) IL-7-dependent extrathymic expansion of CD45RA+ T cells enables preservation of a naive repertoire. J Immunol 161, 5909-5917
- Swainson L, Kinet S, Mongellaz C, Sourisseau M, Henriques T and Taylor N (2007) IL-7-induced proliferation of recent thymic emigrants requires activation of the PI3K pathway. Blood 109, 1034-1042 https://doi.org/10.1182/blood-2006-06-027912
- Ernst B, Lee DS, Chang JM, Sprent J and Surh CD (1999) The peptide ligands mediating positive selection in the thymus control T cell survival and homeostatic proliferation in the periphery. Immunity 11, 173-181 https://doi.org/10.1016/S1074-7613(00)80092-8
- Goldrath AW and Bevan MJ (1999) Low-affinity ligands for the TCR drive proliferation of mature CD8+ T cells in lymphopenic hosts. Immunity 11, 183-190 https://doi.org/10.1016/S1074-7613(00)80093-X
- Surh CD and Sprent J (2008) Homeostasis of naive and memory T cells. Immunity 29, 848-862 https://doi.org/10.1016/j.immuni.2008.11.002
- Surh CD and Sprent J (2005) Regulation of mature T cell homeostasis. Semin Immunol 17, 183-191 https://doi.org/10.1016/j.smim.2005.02.007
- Hennion-Tscheltzoff O, Leboeuf D, Gauthier SD et al (2013) TCR triggering modulates the responsiveness and homeostatic proliferation of CD4+ thymic emigrants to IL-7 therapy. Blood 121, 4684-4693 https://doi.org/10.1182/blood-2012-09-458174
- Park JH, Adoro S, Lucas PJ et al (2007) 'Coreceptor tuning': cytokine signals transcriptionally tailor CD8 coreceptor expression to the self-specificity of the TCR. Nat Immunol 8, 1049-1059 https://doi.org/10.1038/ni1512
- Seddiki N, Santner-Nanan B, Martinson J et al (2006) Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med 203, 1693-1700 https://doi.org/10.1084/jem.20060468
- Liu W, Putnam AL, Xu-Yu Z et al (2006) CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 203, 1701-1711 https://doi.org/10.1084/jem.20060772
- Barata JT, Silva A, Brandao JG, Nadler LM, Cardoso AA and Boussiotis VA (2004) Activation of PI3K is indispensable for interleukin 7-mediated viability, proliferation, glucose use, and growth of T cell acute lymphoblastic leukemia cells. J Exp Med 200, 659-669 https://doi.org/10.1084/jem.20040789
- Wofford JA, Wieman HL, Jacobs SR, Zhao Y and Rathmell JC (2008) IL-7 promotes Glut1 trafficking and glucose uptake via STAT5-mediated activation of Akt to support T-cell survival. Blood 111, 2101-2111 https://doi.org/10.1182/blood-2007-06-096297
- Cui GL, Staron MM, Gray SM et al (2015) IL-7-induced glycerol transport and TAG synthesis promotes memory CD8(+) T cell longevity. Cell 161, 750-761 https://doi.org/10.1016/j.cell.2015.03.021
- Kimura MY, Pobezinsky LA, Guinter TI et al (2013) IL-7 signaling must be intermittent, not continuous, during CD8 (+) T cell homeostasis to promote cell survival instead of cell death. Nat Immunol 14, 143-151 https://doi.org/10.1038/ni.2494
- Rosenberg SA, Sportes C, Ahmadzadeh M et al (2006) IL-7 administration to humans leads to expansion of CD8+ and CD4+ cells but a relative decrease of CD4+ T-regulatory cells. J Immunother 29, 313-319 https://doi.org/10.1097/01.cji.0000210386.55951.c2
- Sportes C, Hakim FT, Memon SA et al (2008) Administration of rhIL-7 in humans increases in vivo TCR repertoire diversity by preferential expansion of naive T cell subsets. J Exp Med 205, 1701-1714 https://doi.org/10.1084/jem.20071681
- Tredan O, Menetrier-Caux C, Ray-Coquard I et al (2015) ELYPSE-7: a randomized placebo-controlled phase IIa trial with CYT107 exploring the restoration of CD4+ lymphocyte count in lymphopenic metastatic breast cancer patients. Ann Oncol 26, 1353-1362 https://doi.org/10.1093/annonc/mdv173
- Merchant MS, Bernstein D, Amoako M et al (2016) Adjuvant immunotherapy to improve outcome in high-risk pediatric sarcomas. Clin Cancer Res 22, 3182-3191 https://doi.org/10.1158/1078-0432.CCR-15-2550
- Reimers MA, Slane KE and Pachynski RK (2019) Immunotherapy in metastatic castration-resistant prostate cancer: past and future strategies for optimization. Curr Urol Rep 20, 64 https://doi.org/10.1007/s11934-019-0931-3
- Sportes C, Babb RR, Krumlauf MC et al (2010) Phase I study of recombinant human interleukin-7 administration in subjects with refractory malignancy. Clin Cancer Res 16, 727-735 https://doi.org/10.1158/1078-0432.CCR-09-1303
- Miller PW, Sharma S, Stolina M et al (2000) Intratumoral administration of adenoviral interleukin 7 gene-modified dendritic cells augments specific antitumor immunity and achieves tumor eradication. Hum Gene Ther 11, 53-65 https://doi.org/10.1089/10430340050016157
- Li B, VanRoey MJ and Jooss K (2007) Recombinant IL-7 enhances the potency of GM-CSF-secreting tumor cell immunotherapy. Clin Immunol 123, 155-165 https://doi.org/10.1016/j.clim.2007.01.002
- Pellegrini M, Calzascia T, Elford AR et al (2009) Adjuvant IL-7 antagonizes multiple cellular and molecular inhibitory networks to enhance immunotherapies. Nat Med 15, 528-536 https://doi.org/10.1038/nm.1953
- Andersson A, Srivastava MK, Harris-White M et al (2011) Role of CXCR3 ligands in IL-7/IL-7R alpha-Fc-mediated antitumor activity in lung cancer. Clin Cancer Res 17, 3660-3672 https://doi.org/10.1158/1078-0432.CCR-10-3346
- Boyman O, Ramsey C, Kim DM, Sprent J and Surh CD (2008) IL-7/anti-IL-7 mAb complexes restore T cell development and induce homeostatic T cell expansion without lymphopenia. J Immunol 180, 7265-7275 https://doi.org/10.4049/jimmunol.180.11.7265
- Martin CE, van Leeuwen EM, Im SJ, Roopenian DC, Sung YC and Surh CD (2013) IL-7/anti-IL-7 mAb complexes augment cytokine potency in mice through association with IgG-Fc and by competition with IL-7R. Blood 121, 4484-4492 https://doi.org/10.1182/blood-2012-08-449215
- Nam HJ, Song MY, Choi DH, Yang SH, Jin HT and Sung YC (2010) Marked enhancement of antigen-specific T-cell responses by IL-7-fused nonlytic, but not lytic, Fc as a genetic adjuvant. Eur J Immunol 40, 351-358 https://doi.org/10.1002/eji.200939271
- Lee SW, Choi D, Heo M et al (2020) hIL-7-hyFc, a longacting IL-7, increased absolute lymphocyte count in healthy subjects. Clin Transl Sci 13, 1161-1169 https://doi.org/10.1111/cts.12800
- Choi YW, Kang MC, Seo YB et al (2016) Intravaginal administration of Fc-fused IL7 suppresses the cervicovaginal tumor by recruiting HPV DNA vaccine-induced CD8 T cells. Clin Cancer Res 22, 5898-5908 https://doi.org/10.1158/1078-0432.CCR-16-0423
- Kim JH, Kim YM, Choi D et al (2020) Hybrid Fc-fused interleukin-7 induces an inflamed tumor microenvironment and improves the efficacy of cancer immunotherapy. Clin Transl Immunology 9, e1168