DOI QR코드

DOI QR Code

A Study of Fluoride Adsorption in Aqueous Solution Using Iron Sludge based Adsorbent at Mine Drainage Treatment Facility

광산배수 정화시설 철 슬러지 기반 흡착제를 활용한 수용액상 불소 흡착에 관한 연구

  • Lee, Joon Hak (Technology Research & Development Institute, Korea Mine Rehabilitation & Mineral Resources corp(KOMIR)) ;
  • Kim, Sun Joon (Department of Earth Resources and Environmental Engineering, Hanyang University)
  • 이준학 (한국광해광업공단, 광해방지연구팀) ;
  • 김선준 (한양대학교 공과대학 자원환경공학과)
  • Received : 2021.11.09
  • Accepted : 2021.12.08
  • Published : 2021.12.28

Abstract

In this study, an adsorbent prepared by natural drying of iron hydroxide-based sludge collected from settling basin at a mine drainage treatment facility located in Gangneung, Gangwon-do was used to remove fluoride in an artificial fluoride solution and mine drainage, and the adsorption characteristics of the adsorbent were investigated. As a result of analyzing the chemical composition, mineralogical properties, and specific surface area of the adsorbent used in the experiment, iron oxide (Fe2O3) occupies 79.2 wt.% as the main constituent, and a peak related to calcite (CaCO3) in the crystal structure analysis was analyzed. It was also identified that an irregular surface and a specific surface area of 216.78 m2·g-1. In the indoor batch-type experiment, the effect of changes in reaction time, pH, initial fluoride concentration and temperature on the change in adsorption amount was analyzed. The adsorption of fluoride showed an adsorption amount of 3.85 mg·g-1 16 hours after the start of the reaction, and the increase rate of the adsorption amount gradually decreased. Also, as the pH increased, the amount of fluoride adsorption decreased, and in particular, the amount of fluoride adsorption decreased rapidly around pH 5.5, the point of zero charge at which the surface charge of the adsorbent changes. Meanwhile, the results of the isotherm adsorption experiment were applied to the Langmuir and Freundlich isotherm adsorption models to infer the fluoride adsorption mechanism of the used adsorbent. To understand the thermodynamic properties of the adsorbent using the Van't Hoff equation, thermodynamic constants 𝚫H° and 𝚫G° were calculated using the adsorption amount information obtained by increasing the temperature from 25℃ to 65℃ to determine the adsorption characteristics of the adsorbent. Finally, the adsorbent was applied to the mine drainage having a fluoride concentration of about 12.8 mg·L-1, and the fluoride removal rate was about 50%.

본 연구에서는 강원도 강릉에 위치한 광산배수 처리시설 침전지에서 채취한 철 수산화물 기반의 슬러지를 자연 건조해 제조한 흡착제를 사용하여 인공 불소 수용액 및 실제 광산배수에 적용하여 흡착제의 불소 흡착 특성을 확인하였다. 실험에 사용된 흡착제의 화학적 성분, 광물학적 특성 및 비표면적을 분석한 결과, 주구성광물로 산화 철(Fe2O3)이 79.2 wt.%를 차지하며, 결정구조 분석에서 방해석(CaCO3)과 관련된 피크가 분석되었다. 또한 불규칙한 표면과 216.78 m2·g-1의 비표면적을 가지고 있음이 확인되었다. 실내 회분식 실험에서는 반응시간, pH, 초기 불소 농도 및 온도 등의 변화가 흡착량 변화에 미치는 영향을 확인하였다. 동적 흡착실험 결과, 불소의 흡착은 반응 시작 16시간 후 3.85 mg·g-1의 흡착량을 보이며 흡착량이 증가하다 점차 흡착량의 증가율이 감소하였으며, 등온 흡착실험에서 확인된 흡착제의 이론적 최대 흡착량은 81.01 mg·g-1으로 분석되었다. 또한 pH가 증가할수록 불소의 흡착량이 감소하는 모습을 보였으며, 특히 흡착제의 영전하점인 pH 5.5 부근에서 급격한 감소량을 나타냈다. 한편 등온 흡착실험의 결과를 Langmuir 및 Freundlich 등온 흡착 모델에 적용하여 사용한 흡착제의 불소 흡착 메커니즘을 유추한 결과, Freundlich 등온 흡착 모델과 더 높은 상관관계(R2=0.9138)로 일치하는 모습을 보였다. Van't Hoff 식을 활용하여 흡착제의 열역학적 특성을 파악하기 위해 25℃에서 65℃까지 온도를 증가시키며 획득한 흡착량 정보로 열역학적 상수 𝚫H°와 𝚫G°을 계산하여 흡착제가 흡열의 흡착 특성을 보이며 반응이 비자발적임을 도출하였다. 마지막으로 약 12.8 mg·L-1의 불소 농도를 가지는 광산배수에 흡착제를 적용하여 실제 환경에서 흡착제의 적용가능성을 확인한 결과, 약 50%의 불소 제거효과가 있는 것으로 나타났다.

Keywords

Acknowledgement

본 논문은 한국광해관리공단 광해방지기술개발사업의 지원으로 수행되었습니다.

References

  1. Amor, Z., Malki, S., Taky, M., Bariou, B., Mameri, N. and Elmidaoui, A. (1998) Optimization of fluoride removal from brackish water by electrodialysis. Desalination, v.120(3), p.263-271. doi: 10.1016/S0011-9164(98)00223-9
  2. Chen, N., Zhang, Z., Feng, C., Li, M., Zhu, D. and Sugiura, N. (2011) Studies on fluoride adsorption of iron-impregnated granular ceramics from aqueous solution. J. Materials. Chem. Physics., v.125, p.293-298. doi: 10.1016/j.matchemphys.2010.09.037
  3. He, J., Yang, Y., Wu, Z., Xie, C., Zhang, K., Kong, L. and Liu, J. (2020) Review of fluoride removal from water environment by adsorption. J. Environ. Chem. Eng., v.8, 104516. doi: 10.1016/j.jece.2020.104516
  4. Jeon, Y.S. (1999) Cadmium ion adsorption behavior in wastewater of manganese nodules and their leaching residues. Master's thesis. Ewha womans university p.12
  5. Kim, S.Y., Kim, J.H., Kim, H.J. and Cho, Y.S. (2005) A Study on the Removal of Low-concentration Fluoride-ion by Modified Alumina. J. Korean. Soc. Environ. Eng., v.27(3), p.247-252.
  6. Kumar, R., Kang, C.U., Mohan, D., Khan, M.A., Lee, J.H., Lee, S.S. and Jeon, B.H. (2020) Waste sludge derived adsorbents for arsenate removal from water. Chemosphere, v.239, 124832. doi: 10.1016/j.chemosphere.2019.124832
  7. Lee, J.I. and Park, S.J. (2019) Adsorption characteristics of calcined oyster shell for the removal of fluoride. J. Korean. Soc. Environ. Eng., v.41(12), p.695-702. doi: 10.4491/KSEE.2019.41.12.695
  8. Liu, J.M., Yue, X.P., Lu, X.Y. and Geo, Y. (2018) Uptake fluoride from water by starch stabilized layered double hydroxides. Water, v.10(6). DOI:10.3390/w10060745.
  9. Liu, M., Zang, Z., Zhang, S., Ouyang, G. and Han, R. (2021) Enhanced fluoride adsorption from aqueous solution by zirconium(IV)-impregnated magnetic chitosan graphene oxide. Inter. J. Bio. Macro., v.182, p.1759-1768. doi: 10.1016/j.ijbiomac.2021.05.116
  10. Mall, I.D., Srivastava, V.C., Kumar, G.V.A. and Mishra, I.M. (2006) Characterization and utilization of mesoporousfertilizer plant waste carbon for adsorptive removal of dyes from aqueous solution. Colloid. Surface, v.278, p.175-187. doi: 10.1016/j.colsurfa.2005.12.017
  11. Ministry of environment (2020) Emission Acceptance Criteria. http://www.law.go.kr/lsInfoP.do?lsiSeq=176703#J34:0.
  12. Na, C.K., Han, M. and Park, H.J. (2011) Applicability of Theoretical Adsorption Models for Studies on Adsorption Properties of Adsorbent(1). J. Korean. Soc. Environ. Eng., v.33(8), p.606-616. doi: 10.4491/KSEE.2011.33.8.606
  13. Sawangjang, B., Induvesa, P., Wongrueng, A., Pumas, C., Wattanachira, S., Rakruam, P., Punyapalakul, P., Takizawa, S. and Khan, E. (2021) Evaluation of Fluoride Adsorption Mechanism and Capacity of Different Types of Bone Char. J. Envion. Res. Public Health, v.18, 6878. https://doi.org/10.3390/ijerph18136878.
  14. Snoeyink, V.L. (1990) Adsorption of organic compounds. In: Pontius, F.W.(Ed), Water Quality and Treatment. McGraw-Hill Inc., New York, p.781-876 chapter 13.
  15. Treybal, R.E. (1981) Mass-Transfer Operation. 3rd ed. McGraw-Hill Inc.
  16. Vences-Alvarez, E., Velazquez-Jimenez, L.H., Chazaro-Ruiz, L.F., Diaz-Flores, P.E., Rangel-Mendez, J.R. (2015) Fluoride removal in water by a hybrid adsorbent lanthanum-carbon. J. Colloid. Inter. Sci., v.455, p.194-202. doi: 10.1016/j.jcis.2015.05.048
  17. W.H.O, Guidelines for Drinking-water Quality, 4th Edition Incorporating the 1st addendum, 2017.