DOI QR코드

DOI QR Code

단열계의 발달 및 연결성 제어요소: 고흥지역 백일도단층의 예

Controlling Factors on the Development and Connectivity of Fracture Network: An Example from the Baekildo Fault in the Goheung Area

  • Park, Chae-Eun (Department of Geology, Kyungpook National University) ;
  • Park, Seung-Ik (Department of Geology, Kyungpook National University)
  • 투고 : 2021.12.02
  • 심사 : 2021.12.19
  • 발행 : 2021.12.28

초록

전라남도 고흥군 백일도에 발달하는 우수향 주향이동 단층인 백일도단층은 응회질 사암과 화산력응회암의 분포를 규제하며 복잡한 단열계를 수반한다. 본 연구에서는 백일도단층 주변의 상세 단열 지도를 기반으로 원조사법 및 위상기하 분석법을 통해 단열계의 기하 및 연결성의 공간적 변화를 파악하였다. 분석 결과 단열계의 밀도와 연결성은 화산력응회암에서보다 응회질 사암에서 더욱 높게 나타난다. 응회암질 사암 내 단층의 주향에 대한 구조적 위치에 따라 단열군의 방향 분산도, 밀도, 그리고 평균 길이가 변화한다. 또한 단층 굴곡 주변에는 단층과 고각을 이루거나 휘어진 단열이 집중되어 발달한다. 상세한 단열 관찰과 분석을 통해 본 연구에서는 다음과 같은 결론을 도출하였다. (1) 응회질 사암 내 단열계의 높은 밀도는 석영, 장석과 같은 취성 광물의 높은 비율에 의해 제어된다. (2) 단열계의 연결성은 구조적 위치에 따른 단열군 방향의 다양화 및 연장성의 증가에 의해 향상된다. (3) 불규칙한 기하를 가진 단층 굴곡은 단층 주변의 응력을 집중 및 교란시켜 단층과 고각을 이루거나 휘어진 단열을 발생시킨다. 연구 결과는 단층 주변 단열계의 발달을 제어하는 여러 지질학적, 구조적 요인에 대한 이해를 증진시키는 데에 도움이 될 것으로 기대된다.

The Baekildo fault, a dextral strike-slip fault developed in Baekil Island, Goheung-gun, controls the distribution of tuffaceous sandstone and lapilli tuff and shows a complex fracture system around it. In this study, we examined the spatial variation in the geometry and connectivity of the fracture system by using circular sampling and topological analysis based on a detailed fracture trace map. As a result, both intensity and connectivity of the fracture system are higher in tuffaceous sandstone than in lapilli tuff. Furthermore, the degree of the orientation dispersion, intensity, and average length of fracture sets vary depending on the along-strike variation in structural position in the tuffaceous sandstone. Notably, curved fractures abutting the fault at a high angle occur at a fault bend. Based on the detailed observation and analyses of the fracture system, we conclude as follows: (1) the high intensity of the fracture system in the tuffaceous sandstone is caused by the higher content of brittle minerals such as quartz and feldspar. (2) the connectivity of the fracture system gets higher with the increase in the diversity and average length of the fracture sets. Finally, (3) the fault bend with geometric irregularity is interpreted to concentrate and disturb the local stress leading to the curved fractures abutting the fault at a high angle. This contribution will provide important insight into various geologic and structural factors that control the development of fracture systems around faults.

키워드

과제정보

이 연구는 한국연구재단 신진연구지원사업(2018R1C1B6003851)에 의해 지원되었으며, 더불어 2021년도 정부(산업통상자원부)의 재원으로 해외자원개발협회의 지원을 받아 수행되었다(데어터사이언스 기반 석유·가스 탐사 컨소시엄). 결과의 일부는 박채은 학부졸업논문 연구의 일환으로 도출되었다. 논문의 질적 향상을 위해 유익한 조언을 주신 두 익명의 심사위원께 감사를 표한다.

참고문헌

  1. Adler, P.M. and Thovert, J.F. (1999) Fractures and fracture networks. Kluwer Academic Publishers, Dordrecht, 431p.
  2. Balberg, I. and Binenbaum, N. (1983) Computer study of the percolation threshold in a two-dimension anisopropic system of conducting sticks. Phys. Rev., v.28, p.3799-3812. doi: 10.1103/PhysRevB.28.3799
  3. Balberg, I., Berkowitz, B. and Drachsler, G.E. (1991) Application of a percolation model to flow in fractured hard rocks. J. Geophy. Res., v.96, p.10015-10021. doi: 10.1029/91JB00681
  4. Barbier, M., Hamon, Y., Callot, J.P., Floquet, M., and Daniel, J.M. (2012) Sedimentary and diagenetic controls on the multiscale fracturing pattern of a carbonate reservoir: The Madison Formation (Sheep Mountain, Wyoming, USA). Mar. Petrol. Geol., v.29, p.50-67. doi: 10.1016/j.marpetgeo.2011.08.009
  5. Bisdom, K., Gauthier, B.D.M., Bertotti, G. and Hardebol, N.J. (2014) Calibrating discrete fracture-network models with a carbonate three-dimensional outcrop fracture network: implications for naturally fractured reservoir modeling. AAPG Bull., v.98, p.1351-1376. doi: 10.1306/02031413060
  6. Cartwright, J.A., Trudgill, B.D. and Mansfield, C.S. (1995) Fault growth by segment linkage: an explanation for scatter in maximum displacement and trace length data from the Canyonlands Grabens of SE Utah. J. Struct. Geol., v.17, p.1319-1326. doi: 10.1016/0191-8141(95)00033-A
  7. Chang, C.J. and Chang, T.W. (1998) Movement history of the Yangsan Fault based on paleostress analysis. J. Eng. Geol., v.8, p.35-49 (in Korean with English abstract). https://doi.org/10.3969/j.issn.1004-9665.2000.01.007
  8. Chang, K.H. (1975) Cretaceous stratigraphy of southeast Korea. J. Geol. Soc. Korea, v.11, p.1-23.
  9. Chang, K.H., Suzukib, K., Park, S.-O., Ishida, K. and Uno, K. (2003) Recent advances in the Cretaceous stratigraphy of Korea. J. Asian Earth Sci., v.21, p.937-948. doi: 10.1016/S1367-9120(02)00142-6
  10. Cheon, Y., Ha, S., Lee, S. and Son, M. (2020) Tectonic evolution of the Cretaceous Gyeongsang Back-arc Basin, SE Korea: Transition from sinistral transtension to strike-slip kinematics. Gondwana Res., v.83, p.16-35. doi: 10.1016/j.gr.2020.01.012
  11. Childs, C., Manzocchi, T., Walsh, J.J., Bonson, C.G., Nicol, A. and Schopfer, M.P.J. (2009) A geometric model of fault zone and fault rock thickness variations. J. Struct. Geol., v.31, p.117-127. doi: 10.1016/j.jsg.2008.08.009
  12. Choi, P.Y., Choi, H.I., Hwang, J.H., Kee, W.S., Ko, H.J., Kim, Y.B., Lee, B.J., Song, K.Y., Kim, J.C. and Choi, Y.S. (2002) Explanatory note of the Mokpo and Yeosu sheets (1:250,000). Korean Institute Geoscience and material Resources, 45p (in Korean with English abstract).
  13. Choi, H.I. (1986) Sedimentation and evolution of the Cretaceous Gyeongsang Basin, southeastern Korea. J. Geol. Soc., v.143, p.29-40. doi: 10.1144/gsjgs.143.1.0029
  14. Choi, P.Y., Lee, S.R., Choi, H.I., Hwang, J.H., Kwon, S.K., Ko, I.S. and An, K.O. (2002) Movement history of the Andong Fault System: Geometric and tectonic approaches. Geosci. J., v.6, p.91-102. doi: 10.1007/BF03028280
  15. Chough, S.K. and Sohn, Y.K. (2010) Tectonic and sedimentary evolution of a Cretaceous continental arc-backarc system in the Korean peninsula: New view. Earth-Sci. Rev., v.101, p.225-249. doi: 10.1016/j.earscirev.2010.05.004
  16. Corbett, K., Friedman, M. and Spang, J. (1987) Fracture development and mechanical stratigraphy of Austin Chalk, Texas. AAPG Bull., v.71, p.17-28. doi: 10.1306/94886D35-1704-11D7-8645000102C1865D
  17. Evans, M.A. and Battles, D.A. (1999) Fluid inclusion and stable isotope analyses of veins from the central Appalachian Valley and Ridge province: implications for regional synorogenic hydrologic structure and fluid migration. Geol. Soc. Am. Bull., v.111, p.1841-1860. doi: 10.1130/0016-7606(1999)111%3C1841:FIASIA%3E2.3.CO;2
  18. Ferrill, D.A. and Morris, A.P. (2008) Fault zone deformation controlled by carbonate mechanical stratigraphy, Balcones fault system, Texas. AAPG Bull., v.92, p.359-380. doi: 10.1306/10290707066
  19. Fitz-Diaz, E., Hudleston, P., Siebenaller, L., Kirschner, D., Camprubl, A., Tolson, G. and Puig, T.P. (2011) Insights intofluidflow and water-rock interaction during deformationof carbonate sequences in the Mexican fold-thrus. J. Struct. Geol., v.33, p.1237-1253. doi: 10.1016/j.jsg.2011.05.009
  20. Fossen, H. (2016) Structural Geology, second edition. Cambridge University Press, Cambridge, 510p.
  21. Friedman, M. (1975) Fracture in rock. Rev. Geophys., v.13, p.352-358. doi: 10.1029/RG013i003p00352
  22. Guerriero, V., Mazzoli, S., Iannace, A., Vitale, S., Carravetta, A. and Strauss, C. (2013) A permeability model for naturally fractured carbonate reservoirs. Mar. Petrol. Geol., v.40, p.115-134. doi: 10.1016/j.marpetgeo.2012.11.002
  23. Hancock, P.L. (1985) Brittle microtectonics: principles and practice. J. Struct. Geol., v.7, p.437-457. doi: 10.1016/0191-8141(85)90048-3
  24. Hanks, C.L., Lorenz, J., Teufel, L., and Krumhardt, A. P. (1997) Lithologic and structural controls on natural fracture distribution and behavior within the Lisburne Group, northeastern Brooks Range and North Slope subsurface, Alaska. AAPG bull., v.81, p.1700-1720. doi: 10.1306/3B05C424-172A-11D7-8645000102C1865D
  25. Hugman, R.H.H. and Friedman, M. (1979) Effects of texture and composition on mechanical behavior of experimentally deformed carbonate rocks. AAPG Bull., v.63, p.1478-1489. doi: 10.1306/2F9185C7-16CE-11D7-8645000102C1865D
  26. Kim, Y.-S. and Park, J.-Y. (2006) Cenozoic deformation history of the area aroung Yangnam-Yangbuk, SE Korea and its tectonic significance. J. Asian Earth Sci., v.26, p.1-20. doi: 10.1016/j.jseaes.2004.08.00
  27. LaPointe, P.R. and Hudson, J.A. (1985) Characterization and interpretation of rock mass joint patterns. Spec. Pap. Geol. Soc. Am., v.199, p.1-37. doi: 10.1130/SPE199-p1
  28. Larsen, B. and Gudmundsson, A. (2010) Linking of fractures in layered rocks: implications for permeability. Tectonophysics, v.492, p.108-120. doi: 10.1016/j.tecto.2010.05.022
  29. Long, J.C.S. and Witherspoon, P.A. (1985) The relationship of interconnection to permeability in fracture networks. J. Geophys. Res., v.90, p.3087-3098. doi: 10.1029/JB090iB04p03087
  30. Mansfield, C.S. and Cartwright, J.A. (1996) High resolution fault displacement mapping from three-dimensional seismic data: evidence for dip linkage during fault growth. J. Struct. Geol., v.18, p.249-263. doi: 10.1016/S0191-8141(96)80048-4
  31. Manzocchi, T. (2002) The connectivity of two dimensional networks of spatially correlated fractures. Water Resour. Res., v.38, p.1162-1181. doi: 10.1029/2000WR000180
  32. March, R., Doster, F. and Geiger, S. (2018) Assessment of CO2 storage potential in naturally fractured reservoirs with dualporosity models. Water Resour. Res., v.54, p.1650-1668. doi: 10.1002/2017WR022159
  33. Marrett, R.A., Ortega, O.J. and Kelsey, C. (1999) Extent of power-law scaling for natural fractures in rock. Geol., v.27, p.799-802. doi: 10.1130/0091-7613(1999)027%3C0799:EOPLSF%3E2.3.CO;2
  34. Mauldon, M., Dunne, W.M. and Rohrbaugh, M.B. (2001) Circular scanlines and circular windows: new tools for characterizing the geometry of fracture traces. J. Struct. Geol., v.23, p.247-258. doi: 10.1016/S0191-8141(00)00094-8
  35. Nelson, R.A. (2001) Geologic Analysis of Naturally Fractured Reservoirs, second edition. Gulf Professional Publishing, Boston, 332p.
  36. Odling, N.E. (1997) Scaling and connectivity of joint systems in sandstones from western Norway. J. Struct. Geol., v.19, p.1257-1271. doi: 10.1016/S0191-8141(97)00041-2
  37. Odling, N.E., Gillespie, P., Bourgine, B., Castaing, C., Chiles, J.P., Christensen N.P., Fillion, E., Genter, A., Olsen, C., Thrane, L., Trice, R., Aarseth, E., Walsh, J.J. and Watterson, J. (1999) Variations in fracture system geometry and their implications for fluid flow in fractures hydrocarbon reservoirs. Pet. Geosci., v.5, p.373-384. doi: 10.1144/petgeo.5.4.373
  38. Odling, N.E. and Larsen, O. (2000) Vein architectur e in the Devonian sandstones of the Hornelen basin, western Norway, and implications for the palaeostrain history. Norske Geol. Tids., v.80, p.289-299. doi: 10.1080/00291960051030626
  39. Olson, J.E., Laubach, S.E. and Lander, R.H. (2009) Natural fracture characterization in tight gas sandstones: integrating mechanics and diagenesis. AAPG Bull., v.93, p.1535-1549. doi: 10.1306/08110909100
  40. Ortega, O. and Marrett, R. (2000) Prediction of macrofracture properties using microfracture information, Mesaverde Group sandstones, San Juan basin, New Mexico. J. Struct. Geol., v.22, p.571-588. doi: 10.1016/S0191-8141(99)00186-8
  41. Ortega, O.J., Marrett, R.A. and Laubach, S.E. (2006) A scaleindependent approach to fracture intensity and average spacing measurement. AAPG Bull., v.90, p.193-208. doi: 10.1306/08250505059
  42. Pahl, P.J. (1981) Estimating the mean length of discontinuity traces. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., v.18, p.221-228. doi: 10.1016/0148-9062(81)90976-1
  43. Palmstrom, A. (1996) Characterizing rock masses by the RMi for use in practical rock engineering: Part 1: the development of the Rock Mass index (RMi). Tunn. Undergr. Space Technol., v.11, p.175-188. doi: 10.1016/0886-7798(96)00015-6
  44. Peacock, D.C.P. and Sanderson, D.J. (1991) Displacements, segment linkage and relay ramps in normal fault zones. J. Struct. Geol., v.13, p.721-733. doi: 10.1016/0191-8141(91)90033-F
  45. Peacock, D.C.P. and Sanderson, D.J. (1994) Geometry and development of relay ramps in normal fault systems. AAPG Bull., v.78, p.147-165. doi: 10.1306/BDFF9046-1718-11D7-8645000102C1865D
  46. Perez-Flores, P., Veloso, E., Cembrano, J., Sanchez-Alfaro, P., Lizama, M. and Arancibia, G. (2017) Fracture network, fluid pathways and paleostress at the Tolhuaca geothermal field. J. Struct Geol., v.96, p.134-148. doi: 10.1016/j.jsg.2017.01.009
  47. Petit, J.P., Auzias, V., Rawnsley, K. and Rives, T. (2000) Development of joint sets in association with faults. In: Lehner, F.K., Urai, J.L. (eds.) Aspect of Tectonic Faulting. Springer-Verlag, Berlin, p.167-184. doi: 10.1007/978-3-642-59617-9_9
  48. Priest, S.D. and Hudson, J.A. (1981) Estimation of discontinuity spacing and trace length using scanline surveys. Int. J. Rock Mech. Min. Sci. Geomech. Abstr., v.18, p.183-197. doi: 10.1016/0148-9062(81)90973-6
  49. Priest, S.D. (1993) Discontinuity analysis for rock engineering. Chapman and Hall, New York, 473p.
  50. Rawnsley, K.D., Rives, T. and Petit J.P. (1992) Joint development in perturbed stress fields near faults. J. Struct. Geol., v.14, p.939-951. doi: 10.1016/0191-8141(92)90025-R
  51. Rohrbaugh, M.B., Dunne, W.M. and Mauldon, M. (2002) Estimating fracture trace intensity, density, and mean length using circular scan lines and windows. AAPG Bull., v.86, p.2087-2102. doi: 10.1306/61EEDE0E-173E-11D7-8645000102C1865D
  52. Rotevatn, A. and Bastesen, E. (2014) Fault linkage and damage zone architecture in tight carbonate rocks in the Suez Rift (Egypt): implications for permeability structure along segmented normal faults. Geol. Soc. Lon., v.374, p.79-95. doi: 10.1144/SP374.12
  53. Sanderson D.J. and Nixon C.W. (2015) The use of topology in fracture network characterization. J. Struct. Geol., v.72, p.55-66. doi: 10.1016/j.jsg.2015.01.005
  54. Sanderson D.J. and Nixon C.W. (2018) Topology, connectivity and percolation in fracture networks. J. Struct. Geol., v.115, p.167-177. doi: 10.1016/j.jsg.2018.07.011
  55. Sarkheil, H., Hassani, H. and Alinia, F. (2013) Fractures distribution modeling using fractal and multi-fractal-neural network analysis in Tabnak hydrocarbon field, Fars, Iran. Arabian J. Geosci., v.6, p.945-956. doi: 10.1007/s12517-011-0400-x
  56. Segall, P. and Pollard, D.D. (1980) Mechanics of discontinuous faults. J. Geophys. Res., v.85, p.4337-4350. doi: 10.1029/JB085iB08p04337
  57. Sinclair, S.W. (1980) Analysis of Macroscopic Fractures on Teton Anticline, Northwestern Montana. Thesis, Texas A&M University, Texas, 102p.
  58. Tamagawa, T. and Pollard, D.D. (2008) Fracture permeability created by perturbed stress fields around active faults in a fractured basement reservoir. AAPG Bull., v.92, p.743-764. doi: 10.1306/02050807013
  59. Tavarnelli, E. and Pasqui, V. (2000) Fault growth by segment linkage in seismically active settings: examples from the Southern Apennines, Italy, and the Coast Ranges, California. J. Geodyn., v.29, p.501-516. doi: 10.1016/S0264-3707(99)00041-1
  60. Walsh, J., Bailey, W., Childs, C., Nicol, A. and Bonson, C. (2003) Formation of segmented normal faults: a 3-D perspective. J. Struct. Geol., v.25, p.1251-1262. doi: 10.1016/S0191-8141(02)00161-X
  61. Watkins, H., Bond, C.E., Healy, D. and Butler, R.W.H. (2015) Appraisal of fracture sampling methods and a new workflow to characterize heterogeneous fracture networks at outcrop. J. Struct. Geol., v.72, p.67-82. doi: 10.1016/j.jsg.2015.02.001
  62. Watkins, H., Bond, C.E., Cawood, A.J., Cooper, M.A. and Warren, M.J. (2019) Fracture distribution on the Swift Reservoir Anticline, Montana: implications for structural and lithological controls on fracture intensity. In: Bond, C.E. and Lebit, H.D. (eds.) Folding and Fracturing of Rocks: 50 Years of Research since the Seminal Text Book of J. G. Ramsay. Geol. Soc. Lon. Spec. Publ., v.487, p.209-228. doi: 10.1144/SP487.9
  63. Wennberg, O.P., Azizzadeh, M., Aqrawi, M.M., Blanc, E., Brockbank, P., Lyslo, K.B., Pickard, N., Salem, L.D. and Svana, T. (2007) The Khaviz Anticline: an outcrop analogue to giant fractured Asmari Formation reservoirs in SW Iran. In: Lonergan, L., Jolly, R.J.H., Rawnsley, K. and Sanderson, D.J. (eds.) Fractured Reservoirs. Geol. Soc. Lon. Spec. Publ., v.270, p.23-42. doi: 10.1144/GSL.SP.2007.270.01.02
  64. Zarei, H.R., Uromeihy, A. and Sharifzadeh, M. (2012) Identifying geological hazards related to tunneling in carbonate karstic rocks - Zagros, Iran. Arabian J. Geosci., v.5, p.457-464. doi: 10.1007/s12517-010-0218-y