DOI QR코드

DOI QR Code

Occurrence and diet analysis of sea turtles in Korean shore

  • Kim, Jihee (Department of Biological Science, Ajou University) ;
  • Kim, Il-Hun (Department of Ecology and Conservation, National Marine Biodiversity Institute of Korea) ;
  • Kim, Min-Seop (Department of Taxonomy and Systematics, National Marine Biodiversity Institute of Korea) ;
  • Lee, Hae Rim (Division of Zoological Research and Management, National Institute of Ecology) ;
  • Kim, Young Jun (Division of Zoological Research and Management, National Institute of Ecology) ;
  • Park, Sangkyu (Department of Biological Science, Ajou University) ;
  • Yang, Dongwoo (Department of Ecology and Conservation, National Marine Biodiversity Institute of Korea)
  • Received : 2021.10.04
  • Accepted : 2021.11.04
  • Published : 2021.12.31

Abstract

Background: Sea turtles, which are globally endangered species, have been stranded and found as bycatch on the Korean shore recently. More studies on sea turtles in Korea are necessary to aid their conservation. To investigate the spatio-temporal occurrence patterns of sea turtles on the Korean shore, we recorded sampling locations and dates, identified species and sexes and measured sizes (maximum curved carapace length; CCL) of collected sea turtles from the year 2014 to 2020. For an analysis of diets through stomach contents, we identified the morphology of the remaining food and extracted DNA, followed by amplification, cloning, and sequencing. Results: A total of 62 stranded or bycaught sea turtle samples were collected from the Korean shores during the study period. There were 36 loggerhead turtles, which were the dominant species, followed by 19 green turtles, three hawksbill turtles, two olive ridley turtles, and two leatherback turtles. The highest numbers were collected in the year 2017 and during summer among the seasons. In terms of locations, most sea turtles were collected from the East Sea, especially from Pohang. Comparing the sizes of collected sea turtles according to species, the average CCL of loggerhead turtles was 79.8 cm, of green turtles was 73.5 cm, and of the relatively large leatherback turtle species was 126.2 cm. In most species, the proportion of females was higher than that of males and juveniles, and was more than 70% across all the species. Food remains were morphologically identified from 19 stomachs, mainly at class level. Seaweeds were abundant in stomachs of green turtles, and Bivalvia was the most detected food item in loggerhead turtles. Based on DNA analysis, food items from a total of 26 stomachs were identified to the species or genus level. The gulfweed, Sargassum thunbergii, and the kelp species, Saccharina japonica, were frequently detected from the stomachs of green turtles and the jellyfish, Cyanea nozakii, the swimming crab, Portunus trituberculatus, and kelps had high frequencies of occurrences in loggerhead turtles. Conclusions: Our findings support those of previous studies suggesting that sea turtles are steadily appearing in the Korean sea. In addition, we verified that fish and seaweed, which inhabit the Korean sea, are frequently detected in the stomach of sea turtles. Accordingly, there is a possibility that sea turtles use the Korean sea as feeding grounds and habitats. These results can serve as basic data for the conservation of globally endangered sea turtles.

Keywords

Acknowledgement

We would like to thank Dr. Hye Seon Kim, Dr. Chang Ho Yi, In-Young Cho, Seong Joon Bae, and Ji Min Kim in MABIK, and Sugil Lee, So Jin Jeon, Young Hae Jang, Ji Yeon Park, and Se Rim Chin in NIE for assisting the necropsy and this study, and anonymous reviewers for their valuable and constructive suggestions.

References

  1. Andre J, Gyuris E, Lawler IR. Comparison of the diets of sympatric dugongs and green turtles on the Orman Reefs, Torres Strait, Australia. Wildl Res. 2005; 32(1):53-62. https://doi.org/10.1071/WR04015.
  2. Avens L, Snover ML. Age and age estimation in sea turtles. In: The Biology of Sea Turtles, Volume III. Boca Raton: CRC press; 2013. p.97-134.
  3. Balazs GH. Field methods for sampling the dietary components of green turtles Chelonia mydas. Herp Review. 1980;11(1):5-6.
  4. Behera S, Tripathy B, Sivakumar K, Choudhury BC. Stomach Contents of Olive Ridley Turtles (Lepidochelys Olivacea) Occurring in Gahirmatha, Odisha Coast of India. Springer. 2015;68(1):91-5. https://doi.org/10.1007/s12595-014-0100-0.
  5. Benson SR, Eguchi T, Foley DG, Forney KA, Bailey H, Hitipeuw C, et al. Large-scale movements and high-use areas of western Pacific leatherback turtles, Dermochelys coriacea. Ecosphere. 2011;2(7):1-27. https://doi.org/10.1890/ES11-00053.1.
  6. Bjorndal KA. Nutritional ecology of sea turtles. Copeia. 1985;3(3):736-51. https://doi.org/10.2307/1444767.
  7. Bjorndal KA. Priorities in foraging habitats. In: Eckert KL, Bjorndal KA, AbrellGrobois FA, Donnelly M, editors. Research and management technique for conservation of sea turtles, vol. 4. Blanchard: IUCN Marine Turtle Specialist Group;1999. p.12-5.
  8. Bjorndal KA. Foraging ecology and nutrition of sea turtles. In: The Biology of Sea Turtles, Volume I. Boca Raton: CRC press; 2017. p.199-231.
  9. Brongersma LD. European atlantic turtles. Zool Verh. 1972;121(1):1-318.
  10. Bugoni L, Krause L, Petry MV. Marine debris and human impacts on sea turtles in southern Brazil. Mar Pollut Bull. 2001;42(12):1330-4. https://doi.org/10.1016/S0025-326X(01)00147-3.
  11. Burgett CM, Burkholder DA, Coates KA, Fourqurean VL, Kenworthy WJ, Manuel SA, et al. Ontogenetic diet shifts of green sea turtles (Chelonia mydas) in a mid-ocean developmental habitat. Mar Biol. 2018;165(2):1-12. https://doi.org/10.1007/s00227-018-3290-6.
  12. Burke VJ, Standora EA, Morreale SJ. Diet of juvenile Kemp's ridley and loggerhead sea turtles from Long Island. New York. Copeia. 1993;4(4):1176-80. https://doi.org/10.2307/1447107.
  13. Carr A. Impact of nondegradable marine debris on the ecology and survival outlook of sea turtles. Mar Pollut Bull. 1987;18(6):352-6. https://doi.org/10.1016/S0025-326X(87)80025-5.
  14. Carrion-Cortez JA, Zarate P, Seminoff JA. Feeding ecology of the green sea turtle (Chelonia mydas) in the Galapagos Islands. J Mar Biol Assoc United Kingdom. 2010;90(5):1005-13. https://doi.org/10.1017/S0025315410000226.
  15. Chan SKF, Cheng IJ, Zhou T, Wang HJ, Gu HX, Song XJ. A comprehensive overview of the population and conservation status of sea turtles in China. Chelonian Conserv Biol. 2007;6(2):185-98. https://doi.org/10.2744/1071-8443(2007)6[185:ACOOTP]2.0.CO;2.
  16. Choi BJ, Byun DS, Lee KH. Satellite-altimeter-derived East Sea surface currents: estimation, description and variability pattern. Sea. 2012;17(4):225-42. https://doi.org/10.7850/jkso.2012.17.4.225.
  17. Deagle BE, Jarman SN, Pemberton D, Gales NJ. Genetic screening for prey in the gut contents from a giant squid (Architeuthis sp.). J. Hered. 2005;96(4):417-23. https://doi.org/10.1093/jhered/esi036.
  18. Delcroix E, Bedel S, Santelli G, Girondot M. Monitoring design for quantification of marine turtle nesting with limited effort: a test case in the Guadeloupe archipelago. Oryx. 2014;48(1):95-105. https://doi.org/10.1017/S0030605311000792.
  19. Derraik JGB. The pollution of the marine environment by plastic debris: a review. Mar Pollut Bull. 2002;44(9):842-52. https://doi.org/10.1016/S0025-326X(02)00220-5.
  20. Dodd CK Jr. Synopsis of the biological data on the loggerhead sea turtle Caretta Caretta (Linnaeus 1758). US Fish Wildl Serv, Biol Rep. 1988;88(14):1-110.
  21. Dunn MR, Szabo A, McVeagh MS, Smith PJ. The diet of deepwater sharks and the benefits of using DNA identification of prey. Deep Sea Res. Part I Oceanogr. Res. Pap. 2010;57(7):923-30. https://doi.org/10.1016/j.dsr.2010.02.006
  22. Esteban N, Mortimer JA, Stokes HJ, Laloe JO, Unsworth RKF, Hays GC. A global review of green turtle diet: sea surface temperature as a potential driver of omnivory levels. Mar Biol. 2020;167(12):1-17. https://doi.org/10.1007/s00227-020-03786-8.
  23. Figgener C, Bernardo J, Plotkin PT. Beyond trophic morphology: stable isotopes reveal ubiquitous versatility in marine turtle trophic ecology. Biol Rev. 2019;94(6):1947-73. https://doi.org/10.1111/brv.12543.
  24. Flint M, Patterson-Kane JC, Limpus CJ, Work TM, Blair D, Mills PC. Postmortem diagnostic investigation of disease in free-ranging marine turtle populations: a review of common pathologic findings and protocols. J Vet Diagnostic Investig. 2009;21(6):733-59. https://doi.org/10.1177/104063870902100601.
  25. Forbes GA, Limpus CJ. A non-lethal method for retrieving stomach contents from sea turtles. Wildl Res. 1993;20(3):339-43. https://doi.org/10.1071/WR9930339.
  26. Frick J. Orientation and behaviour of hatchling green turtles (Chelonia mydas) in the sea. Anim Behav. 1976;24(4):849-57. https://doi.org/10.1016/S0003-3472(76)80015-2.
  27. Fuentes MMPB, Lawler IR, Gyuris E. Dietary preferences of juvenile green turtles (Chelonia mydas) on a tropical reef flat. Wildl Res. 2006;33(8):671-8. https://doi.org/10.1071/WR05081.
  28. Fukuoka T, Kinoshita C, Sato K. Northernmost bycatch record of an olive ridley turtle (Lepidochelys olivacea) in the Pacific Coast of Japan. Mar Turt Newsl. 2019;159:17-22.
  29. Fukuoka T, Yamane M, Kinoshita C, Narazaki T, Marshall GJ, Abernathy KJ, et al. The feeding habit of sea turtles influences their reaction to artificial marine debris. Sci Rep. 2016;6(1):1-11. https://doi.org/10.1038/srep28015.
  30. Garnett ST, Price IR, Scott FJ. The diet of the green turtle, Chelonia mydas (L.), in Torres Strait. Wildl Res. 1985;12(1):103-12. https://doi.org/10.1071/WR9850103.
  31. Godley BJ, Broderick AC, Colman LP, Formia A, Godfrey MH, Hamann M, et al. Reflections on sea turtle conservation. Oryx. 2020;54(3):287-9. https://doi.org/10.1017/S0030605320000162.
  32. Gramentz D. Involvement of loggerhead turtle with the plastic, metal, and hydrocarbon pollution in the central Mediterranean. Mar Pollut Bull. 1988;19(1):11-3. https://doi.org/10.1016/0025-326X(88)90746-1.
  33. Guiry MD, Guiry GM. AlgaeBase. National University of Ireland, Galway: Worldwide electronic publication; 2016. http://www.algaebase.org.
  34. Haywood JC, Fuller WJ, Godley BJ, Shutler JD, Widdicombe S, Broderick AC. Global review and inventory: how stable isotopes are helping us understand ecology and inform conservation of marine turtles. Mar Ecol Prog Ser. 2019;613:217-45. https://doi.org/10.3354/meps12889.
  35. Hironobu D. On a leathery turtle from the sea near Korea. Journal of Chosen National Historical Society. 1936a;21:109-12 (In Japanese).
  36. Hironobu D. Report on a Chelonia japonica from the sea near Korea. Plant and Animal. 1936b;4:797-8 (In Japanese).
  37. Hong SY, Park KY, Park CW, Han CH, Suh HL, Yun SG, Song CB, Jo SG, Lim HS, Kang YS, Kim DJ, Ma CW, Son MH, Kim KB, Choi SD, Park KY, Oh CW, Kim DN, Shon HS, Kim JN, Choi JH, Kim MH, Choi IY. Marine invertebrates in Korean coasts. Seoul: Academy; 2006.
  38. Howell LN, Reich KJ, Shaver DJ, Landry AM, Gorga CC. Ontogenetic shifts in diet and habitat of juvenile green sea turtles in the northwestern Gulf of Mexico. Mar Ecol Prog Ser. 2016;559:217-29. https://doi.org/10.3354/meps11897.
  39. Hughes GR. The sea turtles of South-east Africa. 2. The biology of the Tongaland loggerhead turtle Caretta caretta L. with comments on the leatherback turtle Dermochelys coriacea L. and the green turtle Chelonia mydas L. in the study region. Oceanographic Research Institute. 1974:96.
  40. IUCN. The IUCN red list of threatened species. Version 2021-1. https://www.iucnredlist.org (2021). Accessed 24 Aug 2021.
  41. Jang S, Balazs GH, Parker DM, Kim BY, Kim MY, Ng CKY, et al. Movements of green turtles (Chelonia mydas) rescued from pound nets near Jeju Island. Republic of Korea. Chelonian Conserv Biol. 2018;17(2):236-44. https://doi.org/10.2744/CCB-1279.1.
  42. Jarman SN, Deagle BE, Gales NJ. Group-specific polymerase chain reaction for DNA-based analysis of species diversity and identity in dietary samples. Mol Ecol. 2004;13(5):1313-22. https://doi.org/10.1111/j.1365-294X.2004.02109.x.
  43. Jones TT, Seminoff JA. Feeding biology: advances from field-based observations, physiological studies, and molecular techniques. The biology of sea turtles. CRC press. 2013;3:211-47.
  44. Joo S, Han D, Lee EJ, Park S. Use of length heterogeneity polymerase chain reaction (LH-PCR) as noninvasive approach for dietary analysis of Svalbard reindeer, Rangifer tarandus platyrhynchus. PloS One. 2014;9(3):e91552. https://doi.org/10.1371/journal.pone.0091552.
  45. Jung MM, Moon DY, Kim SH, Kim HS, Kim JW. Observation and record of sea turtles in bycatch and stranding from Jeju Island of Korea. Jour Fish Mar Sci Edu. 2012a;24(5):662-9 (in Korean). https://doi.org/10.13000/JFMSE.2012.24.5.662
  46. Jung MM, Moon DY, Kim SH, Kim HS, Kim JW. Environmental conditions as accidental nesting place of seaturtle located in Jeju Island of Korea. Jour. Fish Mar Sci Edu. 2012b;24(4):507-15 (in Korean). https://doi.org/10.13000/JFMSE.2012.24.4.507.
  47. Kelle L, Gratiot N, de Thoisy B. Olive ridley turtle Lepidochelys olivacea in French Guiana: back from the brink of regional extirpation? Oryx. 2009;43(2):243-6. https://doi.org/10.1017/S0030605309001793.
  48. Kim HS, Boo SM, Lee IK, Sohn CH. National list of species of Korea: marine algae. National Institute of Biological Resources; 2013.
  49. Kim IH, Moon DY, Cho IY, Kim MS, An YR, Han D, et al. Occurrence of sea turtles in the Korean waters and the morphological characteristics of two major species. Korean J Fish Aquat Sci. 2017;50(3):311-8. https://doi.org/10.5657/KFAS.2017.0311 (in Korean).
  50. Kim IH, Yi CH, Lee JH, Park D, Cho IY, Han DJ, et al. First record of the olive ridley sea turtle Lepidochelys olivacea (Reptilia: Testudines: Cheloniidae) from South Korea. Curr Herpetol. 2019;38(2):153-9. https://doi.org/10.5358/hsj.38.153.
  51. Kim J, Joo S, Park S. Diet composition of Korean water deer (Hydropotes inermis argyropus) from the Han River Estuary Wetland in Korea using fecal DNA. Mammalia. 2021;85(6):487-93. https://doi.org/10.1515/mammalia-2021-0010.
  52. Klemens MW. Turtle conservation. Washington DC: Smithsonian; 2000.
  53. Koo KS, Han SH, Oh HS. First report of a hybridization between Caretta caretta and Chelonia mydas from Jeju Island. South Korea. Korean J Environ Biol. 2014;32(4):377-81 (in Korean). https://doi.org/10.11626/KJEB.2014.32.4.377.
  54. Kurata Y, Yoneyama S, Tsutsumi S, Kimura J, Hosokawa S. Experiments to increase number of green turtles through the release of the young. Rep Fundam Res Fish Dev Ogasawara Islands. 1978;3:58-80.
  55. Laist DW. Impacts of marine debris: entanglement of marine life in marine debris including a comprehensive list of species with entanglement and ingestion records. In: Marine Debris. Springer; 1997. p. 99-139. https://doi.org/10.1007/978-1-4613-8486-1_10.
  56. Laloe J-O, Cozens J, Renom B, Taxonera A, Hays GC. Conservation importance of previously undescribed abundance trends: increase in loggerhead turtle numbers nesting on an Atlantic island. Oryx. 2020;54(3):315-22. https://doi.org/10.1017/S0030605318001497.
  57. Lee D, Son SH, Kim W, Park JM, Joo H, Lee SH. Spatio-temporal variability of the habitat suitability index for chub mackerel (Scomber Japonicus) in the East/Japan Sea and the South Sea of South Korea. Remote Sens. 2018;10(6):938. https://doi.org/10.3390/rs10060938.
  58. Lee HJ, Kim IH, Kim JK, Jeong S, Park D. First detailed morphological description of the loggerhead sea turtle (Caretta caretta) caught from the Yellow Sea of Korea. J Ecol Environ. 2014;37(4):201-8. https://doi.org/10.5141/ecoenv.2014.024.
  59. Lee SI, Hwang SJ, Yang JH, Shim JM. Seasonal variation in species composition of gill net and trammel net catches in the coastal waters off Wangdol-cho. Korea. Korean J Ichthyol. 2008;20(4):291-302.
  60. Lee Y, Kang SY. A catalogue of the seaweeds in Korea. Cheju: Cheju National University; 2001.
  61. Lutz PL, Musick JA, Wyneken J. The biology of sea turtles, Volume II. Boca Raton: CRC press; 2002. https://doi.org/10.1201/9781420040807.
  62. Mansfield KL, Putman NF. Oceanic habits and habitats. Biol sea turtles. 2013;3:189-211.
  63. Marquez RM. Sea turtles of the world. FAO Fish Synopsis. 1990;125(11):1-81.
  64. Mascarenhas R, Santos R, Zeppelini D. Plastic debris ingestion by sea turtle in Paraiba. Brazil. Mar Pollut Bull. 2004;49(4):354-5. https://doi.org/10.1016/j.marpolbul.2004.05.006.
  65. Mattlin RH, Cawthorn MW. Marine debris-an international problem. New Zeal Environ. 1986;51:3-6.
  66. Miya M, Sato Y, Fukunaga T, Sado T, Poulsen JY, Sato K, et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: detection of more than 230 subtropical marine species. R Soc Open Sci. 2015;2(7):150088. https://doi.org/10.1098/rsos.150088.
  67. MOF (Ministry of Oceans and Fisheries). 2021. Conservation and Management of Marine Ecosystems Act.
  68. Moon DY, An YR, Jung MM, Kim SY, Choi SK, Lee HY, et al. Satellite tracking of green sea turtles Chelonia mydas in Korean waters. Kor J Fish Aquat Sci. 2011;44(6):709-16 (in Korean). https://doi.org/10.5657/KFAS.2011.0709.
  69. Moon DY, Jung MM, An YR, Choi SG, Oh BS, Kim ZG, et al. Distribution and strandings of endangered sea turtles in Korean waters. Korean J Fish Aquat Sci. 2009;42(6):657-63 (in Korean). https://doi.org/10.5657/kfas.2009.42.6.657.
  70. Mortimer JA. The feeding ecology of the West Caribbean green turtle (Chelonia mydas) in Nicaragua. Biotropica. 1981;13(1):49-58. https://doi.org/10.2307/2387870.
  71. Mortimer JA, Esteban N, Guzman AN, Hays GC. Estimates of marine turtle nesting populations in the south-west Indian Ocean indicate the importance of the Chagos Archipelago. Oryx. 2020;54(3):332-43. https://doi.org/10.1017/S0030605319001108.
  72. Ng CKY, Ang PO, Russell DJ, Balazs GH, Murphy MB. Marine macrophytes and plastics consumed by green turtles (Chelonia mydas) in Hong Kong, South China Sea region. Chelonian Conserv Biol. 2016;15(2):289-92. https://doi.org/10.2744/CCB-1210.1.
  73. NIBR (National Institute of Biological Resources). National list of species of Korea. 2020. http://kbr.go.kr. .
  74. NMFS. Recovery plan for US Pacific populations of the hawksbill turtle (Eretmochelys imbricata). National Marine Fisheries Service. Silver Spring, USA. Published online 1998.
  75. Oh CW. Population biology of the swimming crab Portunus trituberculatus (Miers, 1876) (Decapoda, Brachyura) on the western coast of Korea. Yellow Sea. Crustaceana. 2011;84(10):1251-67. https://doi.org/10.1163/001121611X586675.
  76. Park JI, Lee KS. Site-specific success of three transplanting methods and the effect of planting time on the establishment of Zostera marina transplants. Mar Pollut Bull. 2007;54(8):1238-48. https://doi.org/10.1016/j.marpolbul.2007.03.020.
  77. Piovano S, Lemons GE, Ciriyawa A, Batibasaga A, Seminoff JA. Diet and recruitment of green turtles in Fiji, South Pacific, inferred from in-water capture and stable isotope analysis. Mar Ecol Prog Ser. 2020;640:201-13. https://doi.org/10.3354/meps13287.
  78. Pires MM, Widmer CE, Silva C, Setz EZ. Differential detectability of rodents and birds in scats of ocelots, Leopardus pardalis (Mammalia: Felidae). Zool. 2011; 28(2):280-3. https://doi.org/10.1590/S1984-46702011000200019.
  79. Plotkin PT, Wicksten MK, Amos AF. Feeding ecology of the loggerhead sea turtle Caretta caretta in the Northwestern Gulf of Mexico. Mar Biol. 1993;115(1):1-5. https://doi.org/10.1007/BF00349379.
  80. Prior B, Booth DT, Limpus CJ. Investigating diet and diet switching in green turtles (Chelonia mydas). Aust J Zool. 2015;63(6):365-75. https://doi.org/10.1071/ZO15063.
  81. Rasmussen AR, Murphy JC, Ompi M, Gibbons JW, Uetz P. Marine reptiles. PLoS One. 2011;6(11):e27373. https://doi.org/10.1371/journal.pone.0027373.
  82. Reynolds JC, Aebischer NJ. Comparison and quantification of carnivore diet by faecal analysis: a critique, with recommendations, based on a study of the fox Vulpes vulpes. Mammal rev. 1991;21(3):97-122. https://doi.org/10.1111/j.1365-2907.1991.tb00113.x.
  83. Richardson JI, McGillivary P. Post-hatchling loggerhead turtles eat insects in Sargassum community. Mar Turt Newsl. 1991;55:2-5.
  84. Russell DJ, Balazs GH. Dietary shifts by green turtles (Chelonia mydas) in the Kane'ohe Bay Region of the Hawaiian Islands: a 28-year study. Pacific Sci. 2009;63(2):181-92. https://doi.org/10.2984/049.063.0202.
  85. Russell DJ, Balazs GH. Increased use of non-native algae species in the diet of the green turtle (Chelonia mydas) in a primary pasture ecosystem in Hawaii. Aquat Ecosyst Health Manag. 2015;18(3):342-6. https://doi.org/10.1080/14634988.2015.1027140.
  86. Santos BS, Kaplan DM, Friedrichs MAM, Barco SG, Mansfield KL, Manning JP. Consequences of drift and carcass decomposition for estimating sea turtle mortality hotspots. Ecol Indic. 2018;84:319-36. https://doi.org/10.1016/j.ecolind.2017.08.064.
  87. Schuyler Q, Hardesty BD, Wilcox C, Townsend K. Global analysis of anthropogenic debris ingestion by sea turtles. Conserv Biol. 2014;28(1):129-39. https://doi.org/10.1111/cobi.12126.
  88. Shaver DJ. Feeding ecology of wild and head-started Kemp's ridley sea turtles in south Texas waters. J Herpetol. 1991;25(3):327-34. https://doi.org/10.2307/1564592.
  89. Stiller JW, McClanahan ANA. Phyto-specific 16S rDNA PCR primers for recovering algal and plant sequences from mixed samples. Mol Ecol Notes. 2005;5(1):1-3. https://doi.org/10.1111/j.1471-8286.2004.00805.x.
  90. Stringell TB, Clerveaux WV, Godley BJ, Kent FE, Lewis ED, Marsh JE, et al. Taxonomic distinctness in the diet of two sympatric marine turtle species. Mar Ecol. 2016;37(5):1036-49. https://doi.org/10.1111/maec.12349.
  91. Thomson JA, Heithaus MR, Burkholder DA, Vaudo JJ, Wirsing AJ, Dill LM. Site specialists, diet generalists? Isotopic variation, site fidelity, and foraging by loggerhead turtles in Shark Bay. Western Australia. Mar Ecol Prog Ser. 2012;453:213-26. https://doi.org/10.3354/meps09637.
  92. Tomas J, Aznar FJ, Raga JA. Feeding ecology of the loggerhead turtle Caretta caretta in the western Mediterranean. J Zool. 2001;255(4):525-32. https://doi.org/10.1017/s0952836901001613.
  93. Valentini A, Miquel C, Nawaz MA, Bellemain E, Coissac E, Pompanon F, et al. New perspectives in diet analysis based on DNA barcoding and parallel pyrosequencing: the trnL approach. Mol Ecol Resour. 2009;9(1):51-60. https://doi.org/10.1111/j.1755-0998.2008.02352.x.
  94. Van Nierop MM, Den Hartog JC. A study on the gut contents of live juvenile loggerhead turtles, Caretta caretta (Linnaeus)(Reptilia, Cheloniidae), from the south-eastern part of the North Atlantic Ocean, with emphasis on coelenterate identification. Zool Meded. 1984;59(4):35-54.
  95. Velez-Rubio GM, Cardona L, Lopez-Mendilaharsu M, Souza GM, Carranza A, Gonzalez-Paredes D, et al. Ontogenetic dietary changes of green turtles (Chelonia mydas) in the temperate southwestern Atlantic. Mar Biol. 2016;163(3):57. https://doi.org/10.1007/s00227-016-2827-9.
  96. Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994;3(5):294-9.
  97. Wallace BP, DiMatteo AD, Hurley BJ, Finkbeiner EM, Bolten AB, Chaloupka MY, et al. Regional management units for marine turtles: a novel framework for prioritizing conservation and research across multiple scales. PLoS One. 2010;5(12):e15465. https://doi.org/10.1371/journal.pone.0015465.
  98. Wilcox C, Puckridge M, Schuyler QA, Townsend K, Hardesty BD. A quantitative analysis linking sea turtle mortality and plastic debris ingestion. Sci Rep. 2018;8(1):1-11. https://doi.org/10.1038/s41598-018-30038-z.
  99. Williard AS, Wyneken J, Lohmann KJ, Musick JA. Physiology as integrated systems. In: The Biology of Sea Turtles, Volume III. Boca Raton: CRC press; 2013. p.1-30, DOI: https://doi.org/10.1201/b13895-2.
  100. Wolfe DA. Persistent plastics and debris in the ocean: an international problem of ocean disposal. Mar Pollut Bull. 1987;18(6):303-5. https://doi.org/10.1016/S0025-326X(87)80015-2.
  101. Won HG. Amphibian and reptiles of Chosun. Pyeongyang Printing Office: North Korea, Pyeongyang; 1971. (in Korean)
  102. Won JH, Lee YW. Spatiotemporal variations of marine environmental parameters in the South-western region of the East Sea. Sea. 2015;20(1):16-28. https://doi.org/10.7850/jkso.2015.20.1.16.
  103. Zhao D, Yang C, Ma J, Zhang X, Ran J. Vertebrate prey composition analysis of the Pallas's cat (Otocolobus manul) in the Gongga Mountain Nature Reserve, based on fecal DNA. Mammalia. 2020;84(5):449-57. https://doi.org/10.1515/mammalia-2018-0144.
  104. Zhao H, Feng Y, Dong C, Li Z. Spatiotemporal distribution of Decapterus maruadsi in spring and autumn in response to environmental variation in the northern South China Sea. Reg Stud Mar Sci. 2021;45:101811. https://doi.org/10.1016/j.rsma.2021.101811.