DOI QR코드

DOI QR Code

Investigation of EVA Accelerated Degradation Test for Silicon Photovoltaic Modules

  • Kim, Jaeun (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Rabelo, Matheus (Department of Photovoltaic System Engineering, Sungkyunkwan University) ;
  • Holz, Markus (Faculty of Economics Programm Director Logistics & Air Traffic Management, Anhalt University of Applied Sciences) ;
  • Cho, Eun-Chel (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Yi, Junsin (Department of Electrical and Computer Engineering, Sungkyunkwan University)
  • 투고 : 2021.02.26
  • 심사 : 2021.04.19
  • 발행 : 2021.06.25

초록

Renewable energy has become more popular with the increase in the use of solar power. Consequently, the disposal of defective and old solar panels is gradually increasing giving rise to a new problem. Furthermore, the efficiency and power output decreases with aging. Researchers worldwide are engaged in solving this problem by developing eco-module technologies that restore and reuse the solar panels according to the defect types rather than simple disposal. The eco-module technology not only solves the environmental problem, but also has economic advantages, such as extending the module life. Replacement of encapsulants contributes to a major portion of the module maintenance plan, as the degradation of encapsulants accounts for 60% of the problems found in modules over the past years. However, the current International Electrotechnical Commission (IEC) standard testing was designed for the commercialization of solar modules. As the problem caused by long-term use is not considered, this method is not suitable for the quality assurance evaluation of the eco-module. Therefore, to design a new accelerated test, this paper provides an overview of EVA degradation and comparison with the IEC and accelerated tests.

키워드

과제정보

This research was supported by grants from the New & Renewable Energy Technology Development Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) funded by the Korean Ministry of Trade, Industry and Energy (MOTIE) (Project No. 20203030010060 and 20194010000090).

참고문헌

  1. Weckend, S., Wade, A., and Heath, G., 2016, "End-of-life management: Solar photovoltaic panels", IRENA, pp. 32.
  2. Jordan, D. C., Silverman, T. J., Wohlgemuth, J. H., Kurtz, S. R., and VanSant, K. T., 2017, "Photovoltaic failure and degradation modes", Prog. Photovolt: Res. Appl., 25(4), 318-326. https://doi.org/10.1002/pip.2866
  3. Kempe, M., 2011, "Overview of sientific issues involved in selection of polymers for PV applications", Proceedings of the 2011 37th IEEE Photovoltaic Specialists Conference, pp. 000085-000090.
  4. Sinha, A., Sastry, O.S., and Gupta, R., 2016, "Nondestructive characterization of encapsulant discoloration effects in crystalline-silicon PV modules", Sol. Energy Mater. Sol. Cells, 155, 234-242. https://doi.org/10.1016/j.solmat.2016.06.019
  5. Cznderna, A.W., and Pern, F.J., 1996, "Encapsulation of PV modules using ethylene vinyl acetate copolymer as a pottant: A critical review", Sol. Energy Mater. Sol. Cells, 43(2), 101-181. https://doi.org/10.1016/0927-0248(95)00150-6
  6. Fischer, M., 2020, "ITRPV 11th edition, April 2020 report presentation and key findings", ITRPV, pp. 21.
  7. Gxasheka, A.R., van Dyk, E.E., and Meyer, E.L., 2005, "Evaluation of performance parameters of PV modules deployed outdoors", Renew. Energy, 30(4), 611-620. https://doi.org/10.1016/j.renene.2004.06.005
  8. Wohlgemuth, J.H., Hacke, P., Bosco, N., Miller, D.C., Kempe, M.D., and Kurtz, S.R., 2016, "Assessing the cuases of encapsulant delamination in PV modules", Proceedings of the 2016 IEEE 43rd Photovoltaic Specialists Conference, pp. 0248-0254.
  9. Park, N.C., Jeong, J.S., Kang, B.J., and Kim, D.H., 2013, "The effect of encapsulant discoloration and delamination on the electrical characteristics of photovoltaic module", Microelectronics Reliab., 53(9-11), 1818-1822. https://doi.org/10.1016/j.microrel.2013.07.062
  10. Jentsch, A., Eichhorn, K.-J., and Voit, B., 2015, "Influence of typical stabilizers on the aging behavior of EVA foils for photovoltaic applications during artificial UV-weathering", Polym.Test., 44, 242-247. https://doi.org/10.1016/j.polymertesting.2015.03.022
  11. Wohlgemuth, J. H., Kempe, M.D., and Miller, D.C., 2013, "Discoloration of PV encapsulant", Proceedings of the 2013 IEEE 39th Photovoltaic Specialists Conference, pp. 3260-3265.
  12. Holey, W.W., and Agro, S.C., 1998, "Advanced EVA-based encapsulants", NREL/SR-520-25296.
  13. Oreski, G., and Walner, G.M., 2009, "Evaluation of the aging behavior of ethylene copolymer films for solar applications under accelerated weathering conditions", Sol. Energy, 83, 1040-1047. https://doi.org/10.1016/j.solener.2009.01.009
  14. Pern, F.J., 1997, "Ethylene-vinyl acetate (EVA) encapsulants for photovoltaic modules: degradation and discoloration mechanisms and formulation modifications for improved photostability", Angew. Makromol. Chem., 252(1), 195-216. https://doi.org/10.1002/apmc.1997.052520114
  15. Pern, F.J., and Czanderna, A.W., 1992, "Characterization of ethylene vinyl acetate (EVA) encapsulant: Effects of thermal processing and weathering degradation on its discoloration", Sol. Energy Mater. Sol. Cells, 25(1-2), 3-23. https://doi.org/10.1016/0927-0248(92)90013-F
  16. Pern, F.J., 1996, "Factors that affect the EVA encapsulant discoloration rate upon accelerated exposure", Sol. Energy Mater. Sol. Cells, 41-42, 587-615. https://doi.org/10.1016/0927-0248(95)00128-X
  17. Mclntosch, K. R., Powell, N. E., Norris, A. W., Cotsell, J. N., and Ketola, B. M., 2011, "The effect of damp-heat and UV aging tests on the optical properties of silicone and EVA encapsulants", Prog. Photovolt: Res. Appl., 19(3), 294-300. https://doi.org/10.1002/pip.1025
  18. Pern, F. J., and Jorgensen, G. J., 2005, "Enhanced adhesion of EVA laminates to primed glass substrates subjected to damp heat exposure", Proceedings of the 31st IEEE Photovoltaic Specialists Conference, pp. 495-498.
  19. Shi, X.-M., Zhang, J., Li, D.-R., and Chen, S. J., 2009, "Effect of damp-heat aging on the structures and properties of ethylene-vinyl acetate copolymers with different vinyl acetate contents", J. Appl. Polym. Sci., 112(4), 2358-2365. https://doi.org/10.1002/app.29659
  20. Peike, C., Hoffman, S., Hulsmann, P., Thaidigsmann, B., Weiss, K.A., Koehl, M., and Bentz, P., 2013, "Origin of damp-heat induced cell degradation", Sol. Energy Mater. Sol. Cells, 116, 49-54. https://doi.org/10.1016/j.solmat.2013.03.022
  21. Hulsmann, P., and Weiss, K.-A., 2015, "Simulation of water ingress into PV-modules: IEC-testing versus outdoor exposure" Sol. Energy, 115, 347-353. https://doi.org/10.1016/j.solener.2015.03.007
  22. Hanoka, J.I., 2002, "Accelerated testing of an encapsulant for PV modules", Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, pp. 1565-1567.
  23. Wohlgemuth, J.H., and Kurtz, S., 2011, "Reliability testing beyond qualification as a key component in photovoltaic's progress toward grid parity", Proceedings of the International Reliability Physics Symposium, IRPS11-551.
  24. Wohlgemuth, J. H., and Petersen, R. C., 1993, "Reliability of EVA modules", Conference Record of the Twenty Third IEEE Photovoltaic Specialists Conference, pp. 1090-1094.
  25. Gagliardi, M., and Paggi, M., 2018, "Long-term EVA degradation simulation: Climatic zones comparison and possible revision of accelerated tests", Sol. Energy, 159, 882-897. https://doi.org/10.1016/j.solener.2017.10.081
  26. Jiang, X., He, W., Yang, J., Chen, C., Yang, H., Wang, H., Li, H., and Dong, Y., 2018, "Study on UV Induced EVA Discoloration for Crystalline Silicon Solar Modules", Proceedings of the IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC), pp. 1282-1285.
  27. Wang, H., Wang, A., Yang, H., Zhang, J., and Huang, J., 2016, "Performance degradation of crystalline silicon solar module in various ultraviolet radiation area", Proceedings of the IEEE 43rd Photovoltaic Specialists Conference (PVSC), pp. 1757-1760.
  28. Guiheneuf, V., Delaeux, F., Pouliquen, S., Riou, O., Logerais, P.-O., and Curastanti, J.-F., 2017, "Effects of the irradiance intensity during UV accelerated aging test on unencapsulated silicon solar cells", Sol. Energy, 157, 477-485. https://doi.org/10.1016/j.solener.2017.08.044
  29. Gopalakrishna, H., Sinha, A., Dolia, K., Jordan, D., and Tamizhmani, G., 2019, "Nondestructive Characterization and Accelerated UV Testing of Browned Field-Aged PV Modules", IEEE J. Photovolt., 9(6), 1733-1740. https://doi.org/10.1109/jphotov.2019.2927920
  30. Mikofski, M.A., Kavulak, D.F.J., Okawa, D., Shen, Y., Terao, A., Anderson, M., Caldwell, S., Kim, D., Boitnott, N., Castro, J., Smith, L.A., Lacerda, R., Benjamin, D., and Hasselbrink Jr, E.F., 2012, "PVLife: An Integrated Model for Predicting PV Performance Degradation over 25+ Years", Proceedings of the 2012 38th IEEE Photovoltaic Specialists Conference, pp. 001744-001749.
  31. Kempe, M.D., 2010, "Ultraviolet light test and evaluation methods for encapsulants of photovoltaic modules", Sol. Energy Mater. Sol. Cells, 94(2), 246-253. https://doi.org/10.1016/j.solmat.2009.09.009