DOI QR코드

DOI QR Code

수치해석을 통한 반밀폐공간 내 수소가스 누출 시 농도변화에 관한 연구

Numerical analysis study on the concentration change at hydrogen gas release in semi-closed space

  • Baek, Doo-San (Jusung G&B Inc.) ;
  • Kim, Hyo-Gyu (Jusung G&B Inc.) ;
  • Park, Jin-Yuk (Fire Research Institute, Korea Institute of Civil Engineering and Building Technology) ;
  • Yoo, Yong-Ho (Fire Research Institute, Korea Institute of Civil Engineering and Building Technology)
  • 투고 : 2020.12.20
  • 심사 : 2021.01.07
  • 발행 : 2021.01.31

초록

온실가스 배출량을 줄이기 위해 내연기관 자동차에 대한 제한을 두고, 친환경자동차 보급 확대 정책을 내놓고 있다. 수소 전기자동차의 수소는 가연 범위 및 폭발 범위가 넓고, 폭발화염 전파속도가 매우 빠른 가연성 가스이기 때문에, 제조, 수송, 저장 시 누출, 확산, 점화 및 폭발 등의 위험성을 가지고 있다. 수소전기자동차의 연료탱크에는 폭발 등 위험성을 감소시키기 위해 온도감응식 압력방출장치(Thermally activate Pressure Relief Device, TPRD)가 있어, 사고가 발생했을 경우 폭발, 화재 등이 발생하기 전에 탱크 내부의 수소를 밖으로 방출한다. 그러나 지하주차장이나 터널과 같은 반밀폐공간에서 사고가 발생할 경우 공간 내 기류의 유동이 개방된 공간보다 미미하기 때문에 TPRD로부터 방출된 수소가스의 농도가 폭발하한계 이상으로 누적될 수 있는 등 문제가 발생할 수 있다. 따라서 본 연구에서는 TPRD의 노즐의 직경에 따라 시간에 따른 수소의 누출 유량을 분석하고, 반밀폐공간에서 수소가 누출될 경우 수소 농도변화를 수치해석으로 검토하였다. 노즐의 직경은 1 mm, 2.5 mm, 5 mm로 검토를 하였으며, 노즐 직경에 따라 지하주차장 내의 수소농도는 노즐의 직경이 클수록 빠른 시간에 농도가 높아지며, 최대값 또한 노즐 직경이 클수록 큰 것으로 분석되었다. 기류가 정체된 지하주차장에서는 노즐 주변에서 폭발하한계 이상의 수소 농도가 분포하는 것으로 분석되었으며, 폭발상한계를 넘지는 않는 것으로 분석되었다.

Hydrogen in hydrogen-electric vehicles has a wide range of combustion and explosion ranges, and is a combustible gas with a very fast flame propagation speed, so it has the risk of leakage, diffusion, ignition, and explosion. The fuel tank has a Thermally active Pressure Relief Device (TPRD) to reduce the risk of explosion and other explosions, and in the event of an accident, hydrogen inside the tank is released outside before an explosion or fire occurs. However, if an accident occurs in a semi-closed space such as an underground parking lot, the flow of air flow is smaller than the open space, which can cause the concentration of hydrogen gas emitted from the TPRD to accumulate above the explosion limit. Therefore, in this study, the leakage rate and concentration of hydrogen over time were analyzed according to the diameter of the nozzle of the TPRD. The diameter of the nozzle was considered to be 1 mm, 2.5 mm and 5 mm, and ccording to the diameter of the nozzle, the concentration of hydrogen in the underground parking lot increases in a faster time with the diameter of the nozzle, and the maximum value is also analyzed to be larger with the diameter of the nozzle. In underground parking lots where air currents are stagnant, hydrogen concentrations above LFL (Lowe Flammability Limit) were analyzed to be distributed around the nozzle, and it was analyzed that they did not exceed UFL (Upper Flammability Limit).

키워드

참고문헌

  1. Ahn, H.J., Jung, J.H., Hur, N.K., Lee, M.K., Yong, G.J. (2010), "The numerical simulation of hydrogen diffusion for the hydrogen leakage in tunnel", Journal of Computational Fluids Engineering, Vol. 15, No. 2, pp. 47-54.
  2. Choi, J.R., Hur, N.K., Lee, M.K., Chang, H.J., Lee, K.B., Yong, G.J. (2012), "A numerical analysis of hydrogen diffusion for hydrogen leakage from a fuel cell vehicle in a long road tunnel", Transactions of the Korean Hydrogen and New Energy Society, Vol. 23, No. 6, pp. 588-597. https://doi.org/10.7316/KHNES.2012.23.6.588
  3. Choi, J.W., Lee, L.N., Park, C.W., Lee, S.H., Kim, D.J. (2016), "Dispersion Characteristics of Hydrogen Gas by the Effect of Leakage Hole Size in Enclosure Space", Journal of the Korea Academia-Industrial cooperation Society, Vol. 17, No. 5, pp. 26-35. https://doi.org/10.5762/KAIS.2016.17.5.26
  4. HyTunnel-CS (2019), Deliverable 1.2Report on hydrogen hazards and risks in tunnels and similar confined spaces, pp. 24-26.
  5. Hyundai Motor Company, https://www.hyundai.com/kr/ko/e/vehicles/nexo/spec (January 27, 2021).
  6. Kim, H.K., Choi, Y.M., Kim, S.H., Shim, J.H., Hwang, I.C. (2012), "The evaluation of hydrogen leakage safety for the high pressure hydrogen system of fuel cell vehicle", Transactions of the Korean Hydrogen and New Energy Society, Vol. 23, No. 4, pp. 316-322. https://doi.org/10.7316/KHNES.2012.23.4.316
  7. Ministry of Foreign Affairs, http://www.mofa.go.kr/www/wpge/m_20150/contents.do (January 4, 2021).
  8. Ministry of Land, Infrastructure and Transport (2011), Road design manual (617. ventilation), pp. 617-14.
  9. Ministry of Land, Infrastructure and Transport, http://stat.molit.go.kr/portal/cate/statView.do?hRsId=58 (January 4, 2021).
  10. Moonis, M., Wilday, A.J., Wardman, M.J. (2010), "Semi-quantitative risk assessment of commercial scale supply chain of hydrogen fuel and implications for industry and society", Process Safety and Environmental Protection, Vol. 88, No. 2, pp. 97-108. https://doi.org/10.1016/j.psep.2009.11.006
  11. Zheng, J., Bie, H.Y., Xu, P., Liu, P., Zhao, Y.Z., Chen, H.G., Liu, X., Zhao, L. (2012), "Numerical simulation of high-pressure hydrogen jet flames during bonfire test", International Journal of Hydrogen Energy, Vol. 37, No. 1, pp. 783-790. https://doi.org/10.1016/j.ijhydene.2011.04.061