DOI QR코드

DOI QR Code

On snap-buckling of FG-CNTR curved nanobeams considering surface effects

  • Zhang, Yuan Yuan (School of Mechanics and Engineering, Southwest Jiaotong University) ;
  • Wang, Yu X. (School of Mechanics and Engineering, Southwest Jiaotong University) ;
  • Zhang, Xin (Department of Mechanical Engineering, Northwestern University) ;
  • Shen, Huo M. (School of Mechanics and Engineering, Southwest Jiaotong University) ;
  • She, Gui-Lin (School of mechanical engineering, Chongqing University)
  • 투고 : 2020.07.22
  • 심사 : 2020.10.18
  • 발행 : 2021.02.10

초록

The aim of this paper is to analyze the nonlinear bending of functionally graded (FG) curved nanobeams reinforced by carbon nanotubes (CNTs) in thermal environment. Chen-Yao's surface elastic theory and geometric nonlinearity are also considered. The nanobeams are subjected to uniform loadings and placed on three-parameter substrates. The Euler-Lagrange equations are employed to deduce the equations of equilibrium. Then, the asymptotic solutions and boundary value problems are analytically determined by utilizing the two-step perturbation technique. Finally, the effects of the surface parameters, geometric factors, foundation stiffness, volume fraction, thermal effects and layout type of CNTs on the nonlinear bending of the nanobeams are discussed.

키워드

과제정보

We are grateful to Professor Hongchen Miao of Southwest Jiaotong University for his valuable discussions and suggestions. This work was financially supported by the National Natural Science Foundation of China (Nos. 11672252 and 11502218).

참고문헌

  1. Akgoz, B. and Civalek, O. (2015a), "A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory", Acta Mech., 226, 2277-2294. https://doi.org/10.1007/s00707-015-1308-4.
  2. Akgoz, B. and Civalek, O. (2015b), "A novel microstructure-dependent shear deformable beam model", Int. J. Mech. Sci., 99, 10-20. 10.1016/j.ijmecsci.2015.05.003.
  3. Akgoz, B. and Civalek, O. (2016), "Bending analysis of embedded carbon nanotubes resting on an elastic foundation using strain gradient theory", Acta Astronaut., 119, 1-12. 10.1016/j.actaastro.2015.10.021.
  4. Altenbach, H., Eremeyev, V.A. and Morozov, N.F. (2012), "Surface viscoelasticity and effective properties of thin-walled structures at the nanoscale", Int. J. Eng. Sci., 59, 83-89. https://doi.org/10.1016/j.ijengsci.2012.03.004.
  5. Ansari, R. and Sahmani, S. (2011), "Surface stress effects on the free vibration behavior of nanoplates", Int. J. Eng. Sci., 49(11), 1204-1215. https://doi.org/10.1016/j.ijengsci.2011.06.005.
  6. Attia, M.A. and Mahmoud, F.F. (2015), "Analysis of nanoindentation of functionally graded layered bodies with surface elasticity", Int. J. Mech. Sci., 94-95, 36-48. https://doi.org/10.1016/j.ijmecsci.2015.02.016.
  7. Attia, M.A. and Rahman, A.A.A. (2018), "On vibrations of functionally graded viscoelastic nanobeams with surface effects", Int. J. Eng. Sci., 127, 1-32. https://doi.org/10.1016/j.ijengsci.2018.02.005.
  8. Babaei, H., Kiani, Y. and Eslami, M.R. (2018a), "Geometrically nonlinear analysis of functionally graded shallow curved tubes in thermal environment", Thin-Wall. Struct., 132, 48-57. https://doi.org/10.1016/j.tws.2018.08.008.
  9. Babaei, H., Kiani, Y. and Eslami, M.R. (2018b), "Geometrically nonlinear analysis of shear deformable FGM shallow pinned arches on nonlinear elastic foundation under mechanical and thermal loads", Acta Mech., 229, 3123-3141. https://doi.org/10.1007/s00707-018-2134-2.
  10. Chen, P., Chen, S. and Peng, J. (2016), "Interface behavior of a thin-film bonded to a graded layer coated elastic half-plane", Int. J. Mech. Sci., 115-116, 489-500. https://doi.org/10.1016/j.ijmecsci.2016.07.032.
  11. Chen, S.H. and Yao, Y. (2014), "Elastic theory of nanomaterials based on surface-Energy density", J. Appl. Mech., 81(12), 121002. https://doi.org/10.1115/1.4028780.
  12. Dehrouyeh-Semnani, A.M. (2017a), "On boundary conditions for thermally loaded fg beams", Int. J. Eng. Sci., 119, 109-127. https://doi.org/10.1016/j.ijengsci.2017.06.017.
  13. Dehrouyeh-Semnani, A.M. (2018), "On the thermally induced non-linear response of functionally graded beams", Int. J. Eng. Sci., 125, 53-74. https://doi.org/10.1016/j.ijengsci.2017.12.001. Dehrouyeh-Semnani, A.M., Mostafaei, H., Dehrouyeh, M. and
  14. Nikkhah-Bahrami, M. (2017b), "Thermal pre- and post-snapthrough buckling of a geometrically imperfect doubly-clamped microbeam made of temperature-dependent functionally graded materials", Compos. Struct., 170, 122-134. https://doi.org/10.1016/j.compstruct.2017.03.003
  15. Demir, C. and Civalek, O. (2017), "On the analysis of microbeams", Int. J. Eng. Sci., 121, 14-33. 10.1016/j.ijengsci.2017.08.016.
  16. Ebrahimi, F., Barati M.R. and Civalek O. (2020), "Application of Chebyshev-Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures", Eng. Comput., 36, 953-964. https://doi.org/10.1007/s00366-019-00742-z.
  17. El-Sayed, T. and Farghaly, S.H. (2016), "Exact vibration of Timoshenko beam combined with multiple mass spring subsystems", Struct. Eng. Mech., 57(6), 989-1014. https://doi.org/10.12989/sem.2016.57.6.989.
  18. Ganapathi, M. and Polit, O. (2018), "A nonlocal higher-order model including thickness stretching effect for bending and buckling of curved nanobeams", Appl. Math. Model., 57, 121-141. https://doi.org/10.1016/j.apm.2017.12.025.
  19. Gurses, M., Akgoz, B. and Civalek, O. (2012), "Mathematical modeling of vibration problem of nano-sized annular sector plates using the nonlocal continuum theory via eight-node discrete singular convolution transformation", Appl. Math. Comput., 219, 3226-3240. https://doi.org/10.1016/j.amc.2012.09.062.
  20. Gurtin, M.E. and Murdoch, A.I. (1975), "A continuum theory of elastic material surfaces", Arch. Rat. Mech. Anal., 57, 291-323. https://doi.org/10.1007/BF00261375.
  21. Gurtin, M.E. and Murdoch, A.I. (1978), "Surface stress in solids", Int. J. Solids Struct., 14, 431-440. https://doi.org/10.1016/0020-7683(78)90008-2.
  22. Jam, J. E. and Kiani, Y. (2015), "Low velocity impact response of functionally graded carbon nanotube reinforced composite beams in thermal environment", Compos. Struct., 132, 35-43. 10.1016/j.compstruct.2015.04.045.
  23. Jia, N., Yao, Y., Yang, Y.Z. and Chen, S.H. (2017), "Size effect in the bending of a Timoshenko nanobeam", Acta Mech., 228, 2363-2375. https://doi.org/10.1007/s00707-017-1835-2.
  24. Karami, B., Shahsavari, D., Nazemosadat, S.M.R., Li, L. and Ebrahimi, A. (2018), "Thermal buckling of smart porous functionally graded nanobeam rested on Kerr foundation", Steel Compos. Struct., 29(3), 349-362. https://doi.org/10.12989/scs.2018.29.3.349.
  25. Ke, L.L., Yang, J. and Kitipornchai, S. (2010), "Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams", Compos. Struct., 92, 676-683. https://doi.org/10.1016/j.compstruct.2014.03.015.
  26. Ke, L.L., Yang, J. and Kitipornchai, S. (2013), "Dynamic stability of functionally graded carbon nanotube-reinforced composite beams", Mech. Adv. Mater. Struct., 20(1), 28-37. https://doi.org/10.1080/15376494.2011.581412.
  27. Khosravi, S., Arvin, Hadi and Kiani, Y. (2019a), "Vibration analysis of rotating composite beams reinforced with carbon nanotubes in thermal environment", Int. J. Mech. Sci., 164, 105187-105187.https://doi.org/10.1016/j.ijmecsci.2019.105187.
  28. Khosravi, S., Arvin, Hadi and Kiani, Y. (2019b), "Interactive thermal and inertial buckling of rotating temperature-dependent FG-CNT reinforced composite beams", Composites, 175, 107178. 10.1016/j.compositesb.2019.107178.
  29. Kwon, H., Bradbury, C.R. and Leparoux, M. (2011), "Fabrication of functionally graded carbon nanotube-reinforced aluminum matrix composite", Adv. Eng. Mater., 13(4), 325-329. https://doi.org/10.1002/adem.201000251.
  30. Medina, L., Gilat, R., Ilic, B. and Krylov, S. (2014), "Experimental investigation of the snap-through buckling of electrostatically actuated initially curved pre-stressed micro beams", Sensor. Actuat. A-Physi., 220, 323-332. https://doi.org/10.1016/j.sna.2014.10.016.
  31. Miller, R.E. and Shenoy, V.B. (2000), "Size-dependent elastic properties of nanosized structural elements", Nanotechnology, 11(3), 139-147. https://doi.org/10.1088/0957-4484/11/3/301.
  32. Mindlin, R.D. and Tiersten, H.F. (1962), "Effects of couple-stresses in linear elasticity", Arch. Rat. Mech. Anal., 11(1), 415-448. https://doi.org/10.1007/bf00253946.
  33. Mirzaei, M. and Kiani, Y. (2015), "Snap-through phenomenon in a thermally postbuckled temperature dependent sandwich beam with FG-CNTRC face sheets", Compos. Struct., 134, 1004-1013. 10.1016/j.compstruct.2015.09.003.
  34. Mirzaei M. and Kiani, Y. (2016), "Nonlinear free vibration of temperature-dependent sandwich beams with carbon nanotubereinforced face sheets", Acta Mech., 227(7), 1869-1884. 10.1007/s00707-016-1593-6.
  35. Numanoglu, H.M. Akgoz, B. and Civalek, O. (2018), "On dynamic analysis of nanorods", Int. J. Eng. Sci., 130, 33-50.10.1016/j.ijengsci.2018.05.001.
  36. Phungvan, P., Lieu, Q.X., Nguyenxuan, H. and Wahab, M.M.A. (2017), "Size-dependent isogeometric analysis of functionally graded carbon nanotube-reinforced composite nanoplates", Compos. Struct., 166(15), 120-135. https://doi.org/10.1016/j.compstruct.2017.01.049.
  37. Pi, Y.L., Bradford, M.A. and Liu, A.R. (2017), "Nonlinear equilibrium and buckling of fixed shallow arches subjected to an arbitrary radial concentrated load", Int. J. Struct. Stab. Dy., 17(8), 1750082. https://doi.org/10.1142/S0219455417500821.
  38. Reddy, J.N. (2010), "Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates", Int. J. Eng. Sci., 48(11), 1507-1518. https://doi.org/10.1016/j.ijengsci.2010.09.020.
  39. Reddy, J.N. (2011), "Microstructure-dependent couple stress theories of functionally graded beams", J. Mech. Phys. Solids., 59(11), 2382-2399. https://doi.org/10.1016/j.jmps.2011.06.008.
  40. Rokni, H., Milani, A.S. and Seethaler, R. (2015), "Size-dependent vibration behavior of functionally graded CNT-Reinforced polymer microcantilevers: Modeling and optimization", Eur. J. Mech.-A/Solids, 49, 26-34. https://doi.org/10.1016/j.euromechsol.2014.06.004.
  41. Sahmani, S., Aghdam, M.M. and Bahrami, M. (2015a), "On the postbuckling behavior of geometrically imperfect cylindrical nanoshells subjected to radial compression including surface stress effects", Compos. Struct., 131, 414-424. https://doi.org/10.1016/j.compstruct.2015.05.031.
  42. Sahmani, S., Bahrami, M. and Aghdam, M.M. (2015b), "Surface stress effects on the postbuckling behavior of geometrically imperfect cylindrical nanoshells subjected to combined axial and radial compressions", Int. J. Mech. Sci., 100, 1-22. https://doi.org/10.1016/j.ijmecsci.2015.06.004.
  43. She, G.L., Ren, Y.R. and Yan, K.M. (2019), "On snap-buckling of porous FG curved nanobeams", Acta Astronaut., 161, 475-484. https://doi.org/10.1016/j.actaastro.2019.04.010.
  44. Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026.
  45. Shen, H.S. (2013), A Two-step Perturbation Method in Nonlinear Analysis of Beams, Plates and Shells, John Wiley & Sons Inc, Singapore.
  46. Shen, H.S., He, X.Q. and Yang, D.Q. (2017), "Vibration of thermally postbuckled carbon nanotube-reinforced composite beams resting on elastic foundations", Int. J. Nonlin. Mech., 91, 69-75. https://doi.org/10.1016/j.ijnonlinmec.2017.02.010.
  47. Shen, H.S. and Zhang, C.L. (2010), "Thermal bucking and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates", Mater. Des., 31(7), 3403-3411. https://doi.org/1016/j.matdes.2010.01.048. https://doi.org/10.1016/j.matdes.2010.01.048
  48. Shenoy, V.B. (2005), "Atomistic calculations of elastic properties of metallic fcc crystal surfaces", Phys. Rev. B., 71(9), 094104. https://doi.org/10.1103/PhysRevB.71.094104.
  49. Stoykov, S. (2017), "Buckling analysis of geometrically nonlinear curved beams", J. Comput. Appl. Math., 340, 653-663. https://doi.org/10.1016/j.cam.2017.08.028.
  50. Su, G.Y., Li, Y.X., Li, X.Y. and Müller, R. (2018), "Free and forced vibrations of nanowires on elastic substrates", Int. J. Mech. Sci., 138-139, 62-73. https://doi.org/10.1016/j.ijmecsci.2018.01.039.
  51. Thanh, C., Phungvan, P., Thai, C.H., Nguyenxuan, H. and Wahab, M.M.A. (2018), "Isogeometric analysis of functionally graded carbon nanotube reinforced composite nanoplates using modified couple stress theory", Compos. Struct., 184, 633-649. https://doi.org/10.1016/j.compstruct.2017.10.025.
  52. Wang, G.F. and Feng, X.Q. (2009), "Timoshenko beam model for buckling and vibration of nanowires with surface effects", J. Phys. D: Appl. Phys., 42(15), 155411. https://doi.org/10.1088/0022-3727/42/15/155411.
  53. Wang, G.F. and Feng, X.Q. (2010), "Effect of surface stresses on the vibration and buckling of piezoelectric nanowires", Eur. Letters, 91(5), 56007. https://doi.org/10.1209/0295-5075/91/56007.
  54. Wang, Y.X., Zhang, B., Zhang, X., Liu, J. and Shen, H.M. (2019), "Two-dimensional fretting contact analysis considering surface effects", Int. J. Solids Struct., 170, 68-81. https://doi.org/10.1016/j.ijsolstr.2019.04.027.
  55. Yang, W., Yang, F.P. and Wang, X. (2016), "Coupling influences of nonlocal stress and strain gradients on dynamic pull-in of functionally graded nanotubes reinforced nano-actuator with damping effects", Sensor. Actuat. A-Physi., 248, 10-21. https://doi.org/10.1016/j.sna.2016.07.017.
  56. Yang, Z.C., Huang, Y.H., Liu, A.R., Fu, J.Y. and Wu, D. (2019), "Nonlinear in-plane buckling of fixed shallow functionally graded graphene reinforced composite arches subjected to mechanical and thermal loading", Appl. Math. Model., 70, 315-327. https://doi.org/10.1016/j.apm.2019.01.024.
  57. Yang, Z.C., Yang, J., Liu, A.R. and Fu, J.Y. (2018), "Nonlinear in-plane instability of functionally graded multilayer graphene reinforced composite shallow arches", Compos. Struct., 204, 301-312. https://doi.org/10.1016/j.compstruct.2018.07.072.
  58. Yao, Y. and Chen, S.H. (2015), "Surface effect on resonant properties of nanowires predicted by an elastic theory for nanomaterials", J. Appl. Phys., 118(4), 044303. https://doi.org/10.1063/1.4927290.
  59. Yao, Y. and Chen, S.H. (2016a), "Buckling behavior of nanowires predicted by a new surface energy density model", Acta Mech., 227(7), 1799-1811. https://doi.org/10.1007/s00707-016-1597-2.
  60. Yao, Y. and Chen, S.H. (2016b) "Surface effect in the bending of nanowires.", Mech. Mater., 100, 12-21. https://doi.org/10.1016/j.mechmat.2016.06.005.
  61. Yao, Y., Wei, Y.C. and Chen, S.H. (2015), "Size effect of the surface energy density of nanoparticles", Surf. Sci., 636, 19-24. https://doi.org/10.1016/j.susc.2015.01.016.
  62. Zhang, L.W., Lei, Z.X. and Liew, K.M. (2015a), "Buckling analysis of FG-CNT reinforced composite thick skew plates using an element-free approach", Compos. Part B Eng., 75, 36-46. https://doi.org/10.1016/j.compositesb.2015.01.033.
  63. Zhang, L.W., Song, Z.G. and Liew, K.M. (2015b), "Nonlinear bending analysis of FG-CNT reinforced composite thick plates resting on Pasternak foundations using the element-free IMLS-Ritz method", Compos. Struct., 128, 165-175. https://doi.org/10.1016/j.compstruct.2015.03.011.
  64. Zhang, X., Wang, Q.J., Wang, Y.X., Wang, Z.j., Shen, H.M. and Liu, J. (2018), "Contact involving a functionally graded elastic thin film and considering surface effects", Int. J. Solids Struct., 150, 184-196. https://doi.org/10.1016/j.ijsolstr.2018.06.016.
  65. Zhang, X., Wang, Z.J., Shen, H.M. and Wang, Q.J. (2017), "Frictional contact involving a multiferroic thin film subjected to surface magnetoelectroelastic effects", Int. J. Mech. Sci., 131-132, 633-648. https://doi.org/10.1016/j.ijmecsci.2017.07.039.
  66. Zhang, Y.Y., Shen, H.M., Wang, Y.X. and Zhang, X. (2020a), "Combined effects of surface energy and couple stress on the nonlinear bending of FG-CNTR nanobeams", Int. J. Mod. Phys. B, 2050103. https://doi.org/10.1142/S0217979220501039.
  67. Zhang, Y.Y., Zhang, B., Shen, H.M., Wang, Y.X., Zhang, X. and Liu, J. (2020b), "Nonlinear bending analysis of functionally graded CNT-reinforced shallow arches placed on elastic foundations", Acta Mech. Solida Sin., 33(6), 164-186. https://doi.org/10.1007/s10338-019-00141-3.