Acknowledgement
The authors would like to thank CAPES and CNPq (Federal Research Agencies), FAPEMIG (Minas Gerais State Research Agency), Gorceix Foundation, PROPEC/UFOP, PROPP/UFOP, and UFLA for their support during the preparation of this work.
References
- Alhasawi, A., Heng, P., Hjiaj, M., Guezouli, S. and Battini, J.M. (2017), "Co-rotational planar beam element with generalized elasto-plastic hinges", Eng. Struct., 151, 188-205. https://doi.org/10.1016/10.1016/j.engstruct.2017.07.085.
- Bouras, Y. and Vrcelj, Z. (2019), "Thermal in-plane stability of concrete-filled steel tubular arches", Int. J. Mech. Sci., 163, 105130. https://doi.org/10.1016/j.ijmecsci.2019.105130.
- Chan, S.L. (1988), "Geometric material non-linear analysis of beam-columns and frames using the minimum residual displacement method", Int. J. Numer. Method. Eng., 26, 2657- 2669. https://doi.org/ https://doi.org/10.1002/nme.1620261206
- Chan, S.L. and Chui, P. (2000), Non-linear static and cyclic analysis of steel frames with semi-rigid connections, Oxford, Elsevier.
- Chen, L., Liu, S.W. and Chan, S.L. (2017), "Divergence-free algorithms for moment-thrust-curvature analysis of arbitrary sections", Steel Compos. Struct., 25(5), 557-569. https://doi.org/10.12989/scs.2017.25.5.557.
- Chen, W.F. and Kim, S.E. (1997), LRFD steel design using advanced analysis, CRC Press, Boca Raton, Florida, United States of America.
- Chen, W.F. and Toma, E. (1994), Advanced analysis of steel frames, CRC Press, Boca Raton, Florida, United States of America.
- Chen, S., Teng, J.G. and Chan, S.L. (2001), "Design of biaxially loaded short composite columns of arbitrary section", J. Struct. Eng., 127(6), 678-685. https://doi.org/10.1061/(ASCE)0733- 9445(2001)127:6(678).
- Chhang, S., Battini, J.M. and Hjiaj, M. (2017), "Energy-momentum method for co-rotational plane beams: A comparative study of shear flexible formulations", Finite Elemen. Anal. Des., 134, 41-54. https://doi.org/10.1016/j._nel.2017.04.001.
- Chiorean, C.G. (2013), "A computer method for nonlinear inelastic analysis of 3D composite steel-concrete frame structures", Eng. Struct., 57, 125-152. https://doi.org/10.1016/j.engstruct.2013.09.025.
- Crisfield, M.A. (1991), "Non-linear finite element analysis of solids and structures", Wiley, 1.
- Dimopoulos, C.A. and Gantes, C.J. (2008), "Design of circular steel arches with hollow circular cross-sections according to EC3", J. Constr. Steel Res., 64, 1077-1085. https://doi.org/10.1016/j.jcsr.2007.09.009.
- Du, Z.L. Liu, Y.P. and Chan, S.L. (2018), "A force-based element for direct analysis using stress-resultant plasticity model", Steel Compos. Struct., 29(2), 175-186. https://doi.org/10.12989/scs.2018.29.2.175.
- ECCS (1983), Ultimate limit state calculation of sway frames with rigid joints, pub. no. 33, European Convention for Constructional Steelwork.
- Eurocode 3 (2004), Design of steel structures. Part 1-1: General rules and rules for buildings, prEN 1993-1-1.
- Guo, Z., Wang, Y., Lu, N., Zhang, H. and Zhu, F. (2016), "Behaviour of a two-pinned steel arch at elevated temperatures", Thin-Wall. Struct., 107, 248-256. https://doi.org/10.1016/j.tws.2016.06.015.
- Iffland, J.S.B. and Birnstiel, C. (1982), "Stability design procedures for building frameworks", AISC Proj. No. 21.62, AISC, Chicago, Ill.
- Kaminski, M.M. and Swita, P. (2011), "Generalized stochastic finite element method in elastic stability problems", Comput. Struct., 89, 1241-1252. https://doi.org/10.1016/j.compstruc.2010.08.009.
- Kitipornchai, S., Al-Bermani, F.G.A. and Chan, S.L. (1988), "Geometric and material nonlinear analysis of structures comprising rectangular hollow sections", Eng. Struct., 10(1), 13-23. https://doi.org/10.1016/0141-0296(88)90012-0.
- Lemes, I.J.M., Silveira, R.A.M., Silva, A.R.D. and Rocha, P.A.S. (2017), "Nonlinear analysis of two-dimensional steel, reinforced concrete and composite steel-concrete structures via coupling SCM/RPHM", Eng. Struct., 147, 12-26. https://doi.org/10.1016/j.engstruct.2017.05.042.
- Li, T.J., Liu, S.W. and Chan, S.L. (2015a), "Cross-sectional analysis of arbitrary sections allowing for residual stresses", Steel Compos. Struct., 18(4), 985-1000. https://doi.org/10.12989/scs.2015.18.4.985
- Li, T.J., Liu, S.W. and Chan, S.L. (2015b), "Direct analysis for high-strength steel frames with explicit model of residual stresses", Eng. Struct., 100, 342-355. https://doi.org/10.1016/j.engstruct.2015.06.008
- Liu, S.W., Ziemian, R.D., Chen, L. and Chan, S. L. (2018), "Bifurcation and large-deflection analyses of thin-walled beam-columns with non-symmetric open-sections", Thin-Wall. Struct., 132, 287-301. https://doi.org/10.1016/j.tws.2018.07.044
- Mathur, K. (2011), "Effects of residual stresses and initial imperfections on Earthquake response of steel moment frames", Ph.D. dissertation, Graduate College of the University of Illinois Urbana-Champaign, Illinois, United States of America.
- Ngo-Huu, C. and Kim, S.E., (2012), "Practical non- linear analysis of steel-concrete composite frames using fiber-hinge method", J. Constr. Steel Res., 74, 90-97. https://doi.org/10.1016/j.jcsr.2012.02.018.
- Pi, Y.L. and Trahair, N.S. (1996), "In-plane inelastic buckling and strengths of steel arches", J. Struct. Eng., 122, 734-747. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:7(734).
- Scott, M.H. and Fenves, G.L. (2006), "Plastic-hinge integration methods for forced-based beam-column elements", J. Struct. Eng., 132(2), 244-252. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:2(244).
- Sfakianakis, M.G. (2002), "Biaxial bending with axial force of reinforced, composite and repaired concrete section of arbitrary shape by fiber model and computer graphics", Adv. Eng. Software, 33(4), 227-242. https://doi.org/10.1016/S0965-9978(02)00002-9.
- Tang, Y.Q., Zhou, Z.H. and Chan, S.L. (2015), "Nonlinear beam-column element under consistent deformation", Int. J. Struct. Stab. Dynam., 15(5), 1450068. https://doi.org/10.1142/S0219455414500680.
- .Vogel, U. (1985), "Calibrating frames", Stahlbau, 54, 295-311.
- Yabuki, T., Vinnakota, S. and Kuranishi, S. (1986), "Fixed-end restraint effect on steel arch strength", J. Struct. Eng., 112, 653-664. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:4(653).
- Wang, Y.B., Li G.Q., Chen, S.W. and Sun, F.F. (2014), "Experimental and numerical study on the behavior of axially compressed high steel box-columns", Eng. Struct., 58, 79-91. https://doi.org/10.1016/j.engstruct.2013.10.013.
- Ziemian, R.D. (1993), "Examples of frame studies used to verify advanced methods of inelastic analysis", In: Plastic Hinge Based Methods for Advanced Analysis and Design of Steel Frames. Structural Stability Research Council, SSRC, Lehigh Univ., Bethlehem, PA.
- Ziemian, R.D. and McGuire, W. (2002), "Modified tangent modulus approach, a contribution to plastic hinge analysis", J. Struct. Eng., 128, 1301-1307. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:10(1301).
- Ziemian, R.D. and Miller, A.R. (1997), "Inelastic analysis and design: frames with members in minor-axis bending", J. Struct. Eng., 123(2), 151-156. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:2(151).
- Zubydan, A.H. (2011), "Inelastic second order analysis of steel frame elements exed about minor axis", Eng. Struct., 33, 1240-1250. https://doi.org/10.1016/j.engstruct.2010.12.046.
- Zubydan, A.H. (2013), "Inelastic large deflection analysis of space steel frames including H-shaped cross-sectional members", Eng. Struct., 48, 155-165. https://doi.org/10.1016/j.engstruct.2012.09.024.