DOI QR코드

DOI QR Code

Numerical study on the deflections of steel-concrete composite beams with partial interaction

  • Mirambell, Enrique (Department of Civil and Environmental Engineering, Polytechnic University of Catalunya) ;
  • Bonilla, Jorge (Group for Numerical Methods in Engineering, University of Ciego de Avila) ;
  • Bezerra, Luciano M. (Department of Civil and Environmental Engineering, University of Brasilia) ;
  • Clero, Beatriz (Group for Numerical Methods in Engineering, University of Ciego de Avila)
  • Received : 2019.12.18
  • Accepted : 2020.12.31
  • Published : 2021.01.10

Abstract

The use of composite beams with partial interaction, with less shear connectors than those required for full interaction, may be advantageous in many situations. However, these beams tend to show higher deflections compared to beams with full interaction, and codified expressions for the calculation of such deflections are not fully developed and validated. Thus, this paper presents a comprehensive numerical study on the deflections of steel-concrete composite beams with partial interaction. Efficient numerical models of full-scale composite beams considering material nonlinearities and contact between their parts have been developed by means of the advanced software ABAQUS, including a damage model to simulate the concrete slab. The FE models were validated against experimental results, and subsequently parametric studies were developed to investigate the influence of the shear connection degree and the coefficient of friction in the deflection of composite beams. The comparison of predicted deflections using reference codes (AISC, Eurocode-4 and AS-2327.1) against numerical results showed that there are still inaccuracies in the estimation of deflections for the verification of the serviceability limit state, according to some of the analyzed codes.

Keywords

References

  1. ABAQUS. (2014a), User's Manual, Version 6.14-1. Dassault Systemes Simulia Corp, Providence, RI, USA.
  2. ABAQUS. (2014b), Theory manual, Version 6.14-1. Dassault Systemes Simulia Corp, Providence, RI, USA.
  3. Alfarah, B., Lopez-Almansa, F. and Oller, S. (2017), "New methodology for calculating damage variables evolution in Plastic Damage Model for RC structures", Eng. Struct., 132, 70-86. https://doi.org/10.1016/j.engstruct.2016.11.022
  4. An, L. and Cederwall, K. (1996), "Push-out Tests on Studs in High Strength and Normal Strength Concrete", J. Constr. Steel Res., 36(1), 15-29. https://doi.org/10.1016/0143-974X(94)00036-H.
  5. ANSI/AISC-360-05. (2005), ANSI/AISC 360-05 - Specification for Structural Steel Buildings. American Institution of Steel Construction, Chicago, IL, USA.
  6. ANSI/AISC-360-10. (2010), ANSI/AISC 360-10 - Specification for Structural Steel Buildings. American Institution of Steel Construction, Chicago, IL, USA.
  7. AS-2327.1. (2003), Composite Structures Part 1: Simply supported beams. Standards Australia, Sydney, Australia.
  8. Ban, H., and Bradford, M. A. (2013), "Flexural behaviour of composite beams with high strength steel", Eng. Struct., 56, 1130-1141. https://doi.org/10.1016/j.engstruct.2013.06.040.
  9. Ban, H., Bradford, M.A., Uy, B. and Liu, X. (2016), "Available rotation capacity of composite beams with high-strength materials under sagging moment", J. Constr. Steel Res., 118, 156-168. https://doi.org/10.1016/j.jcsr.2015.11.008.
  10. Ban, H.Y., Shi, G., Shi, Y.J. and Wang, Y.Q. (2011), "Research progress on the mechanical property of high strength structural steel", Adv. Mater. Res., 250-253(1-4), 640-648. https://doi.org/10.4028/www.scientific.net/AMR.250-253.640.
  11. Bezerra, L.M., Cavalcante, O.O., Chater, L. and Bonilla, J. (2018), "V-shaped shear connector for composite steel-concrete beam." J. Constr. Steel Res., 150, 162-174. https://doi.org/10.1016/j.jcsr.2018.07.016.
  12. Bonilla, J., Bezerra, L.M. and Mirambell, E. (2019), "Resistance of stud shear connectors in composite beams using profiled steel sheeting", Eng. Struct., 187, 478-489. https://doi.org/10.1016/j.engstruct.2019.03.004.
  13. Bonilla, J., Bezerra, L.M., Mirambell, E. and Massicotte, B. (2018), "Review of stud shear resistance prediction in steel-concrete composite beams", Steel Compos. Struct., 27(3), 355-370. http://dx.doi.org/10.12989/scs.2018.27.3.355.
  14. Bradford, M.A. and Gilbert, R.I. (1992), "Composite Beams with Partial Interaction under Sustained Loads", J. Struct. Eng., 118(7), 1871-1883. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:7(1871).
  15. CEB-FIP. (2010), Model Code 2010. Thomas Telford, London.
  16. Chapman, J.C. and Balakrishnan, S. (1964), "Experiments on Composite Beams", J. Struct. Engineer, 42(11), 369-383.
  17. Cornelissen, H., Hordijk, D. and Reinhardt, H. (1986), "Experimental determination of crack softening characteristics of normal weight and lightweight concrete", Heron, 31(2), 45-56.
  18. Dall'Asta, A. and Zona, A. (2002), "Non-linear analysis of composite beams by a displacement approach", Comput. Struct., 80(27-30), 2217-2228. https://doi.org/10.1016/S0045-7949(02)00268-7.
  19. Daniels, B.J. and Crisinel, M. (1993), "Composite Slab Behavior and Strength Analysis. Part I: Calculation Procedure", J. Struct. Eng., 119(1), 16-35. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:1(16).
  20. Ellobody, E. and Young, B. (2006), "Performance of shear connection in composite beams with profiled steel sheeting", J. Constr. Steel Res., 62(7), 682-694. https://doi.org/10.1016/j.jcsr.2005.11.004.
  21. Eom, S.S., Vu, Q.V., Choi, J.H., Papazafeiropoulos, G. and Kim, S.E. (2019), "Behavior of composite CFST beam-steel column joints", Steel Compos. Struct., 32(5), 583-594. https://doi.org/10.12989/scs.2019.32.5.583.
  22. Eurocode-4. (1992), ENV1994-1-1:1992 - Design of composite steel and concrete structures - Part 1-1: General rules for buildings. European Committee for Standardization (CEN), Brussels, Belgium.
  23. Eurocode-4. (2004), EN1994-1-1:2004 - Design of Composite Steel and Concrete Structures Part 1.1. European Committee for Standardization (CEN), Brussels, Belgium.
  24. Jayas, B.S. and Hosain, M.U. (1988), "Behavior of Headed Studs in Composite Beams: Push-out Test", Can. J. Civil Eng., 15(2), 240-253. https://doi.org/10.1139/l88-032.
  25. Johnson, R.P. and May, I.M. (1975), "Partial-interaction design of composite beams", Struct. Engineer, 53(8), 305-311.
  26. Kim, S.H., Jung, C.Y. and Ahn, J.H. (2011), "Ultimate strength of composite structure with different degrees of shear connection", Steel Compos. Struct., 11(5), 375-390. https://doi.org/10.12989/scs.2011.11.5.375.
  27. Lam, D. and Ellobody, E. (2005), "Behavior of Headed Stud Shear Connectors in Composite Beam", J. Struct. Eng., 131(1), 96-106. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:1(96).
  28. Lee, J. and Fenves, G.L. (1998), "Plactic-Damage Model for Cyclic Loading of Concrete Structures", J. Eng. Mech., 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892).
  29. Lee, P.G., Shim, C.S. and Chang, S.P. (2005), "Static and fatigue behaviour of large stud shear connectors for steel-concrete composite bridges", J. Constr. Steel Res., 61, 1270-1285. https://doi.org/10.1016/j.jcsr.2005.01.007.
  30. Liang, Q.Q., Uy, B., Bradford, M.A. and Ronagh, H.R. (2004), "Ultimate strength of continuous composite beams in combined bending and shear", J. Constr. Steel Res. 60, 1109-1128. https://doi.org/10.1016/j.jcsr.2003.12.001.
  31. Liang, Q.Q., Uy, B., Bradford, M.A. and Ronagh, H.R. (2005), "Strength Analysis of Steel-Concrete Composite Beams in Combined Bending and Shear", J. Struct. Eng., 131(10), 1593-1600. https://doi.org/ 10.1061/(ASCE)0733-9445(2005)131:10(1593).
  32. Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A Plastic-Damage Model for Concrete", Int. J. Solids Struct., 25(3), 229-326. https://doi.org/10.1016/0020-7683(89)90050-4.
  33. Lyons, J.C., Easterling, W.S. and Murray, T.M. (1994), Strength of Welded Shear Studs, Report No. CE/VPI-ST 94/07. Blacksburg, VA.
  34. Mirza, O. and Uy, B. (2010), "Effects of the combination of axial and shear loading on the behaviour of headed stud steel anchors", Eng. Struct., 32(1), 93-105. https://doi.org/10.1016/j.engstruct.2009.08.019.
  35. Nguyen, H.T. and Kim, S.E. (2009), "Finite element modeling of push-out tests for large stud shear connectors", J. Constr.Steel Res., (65), 1909-1920. https://doi.org/10.1016/j.jcsr.2009.06.010.
  36. Nie, J., Fan, J. and Cai, C.S. (2008), "Experimental study of partially shear-connected composite beams with profiled sheeting", Eng. Struct., 30, 1-12. https://doi.org/10.1016/j.engstruct.2007.02.016.
  37. Oehlers, D.J., Seracino, R. and Yeo, M.F. (2000), "Effect of Friction on Shear Connection in Composite Bridge Beams", J. Bridge Eng., 5(2). https://doi.org/10.1061/(ASCE)1084-0702(2000)5:2(91).
  38. Pavlovic, M., Markovic, Z., Veljkovic, M. and Budevac, D. (2013), "Bolted shear connectors vs. headed studs behaviour in pushout tests", J. Constr. Steel Res., 88, 134-149. https://doi.org/10.1016/j.jcsr.2013.05.003.
  39. Prakash, A., Anandavalli, N., Madheswaran, C.K., Rajasankar, J., and Lakshmanan, N. (2011), "Three Dimensional FE Model of Stud Connected Steel-Concrete Composite Girders Subjected to Monotonic Loading", Int. J. Mech. Appl., 1(1), 1-11. https://doi.org/10.5923/j.mechanics.20110101.01.
  40. Queiroz, G., Carvalho, H., Rodrigues, F. and Pfeil, M. (2014), "Estimation of friction contribution in the behaviour of steel-concrete composite beams with flexible shear connectors", Rem Revista Escola de Minas, 67(3), 253-258. http://dx.doi.org/10.1590/S0370-44672014000300002.
  41. Qureshi, J. and Lam, D. (2012), "Behaviour of Headed Shear Stud in Composite Beams with Profiled Metal Decking", Adv. Struct. Eng., 15(9), 1547-1558. https://doi.org/10.1260/1369-4332.15.9.1547.
  42. Rambo-Roddenberry, M.D. (2002), "Behavior and Strength of Welded Stud Shear Connectors", Ph.D. Dissertation, University of Blacksburg, Virginia, EE.UU.
  43. Salari, M., Spacone, E., Shing, P.B. and Frangopol, D.M. (1998), "Nonlinear Analysis of Composite Beams with Deformable Shear Connectors", J. Struct. Eng., 124(10), 1148-1158. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1148).
  44. Shim, C.S., Lee, P.G. and Yoon, T.Y. (2004), "Static behaviour of large stud shear connectors", Eng. Struct., 26, 1853-1860. https://doi.org/10.1016/j.engstruct.2004.07.011.
  45. Song, Y., Uy, B. and Wang, J. (2019), "Numerical analysis of stainless steel-concrete composite beam-to-column joints with bolted flush endplates", Steel Compos. Struct., 33(1), 143-162. https://doi.org/10.12989/scs.2019.33.1.143.
  46. Tahmasebinia, F., Ranzi, G. and Zona, A. (2013), "Probabilistic three-dimensional finite element study on composite beams with steel trapezoidal decking", J. Constr. Steel Res., 80, 394-411. https://doi.org/10.1016/j.jcsr.2012.10.003.
  47. Turmo, J., Lozano-Galant, J.A., Mirambell, E. and Xu, D. (2015), "Modeling composite beams with partial interaction", J. Constr. Steel Res., 114, 380-393. https://doi.org/10.1016/j.jcsr.2015.07.007.
  48. Wang, Y.C. (1998), "Deflection of Steel-Concrete Composite Beams with Partial Shear Interaction", J. Struct. Eng., 124(10), 1159-1165. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1159).
  49. Xing, Y., Han, Q., Xu, J., Guo, Q. and Wang, Y. (2016), "Experimental and numerical study on static behavior of elastic concrete-steel composite beams", J. Constr. Steel Res., (123), 79-92. https://doi.org/10.1016/j.jcsr.2016.04.023.
  50. Xu, X., Liu, Y. and He, J. (2014), "Study on mechanical behavior of rubber-sleeved studs for steel and concrete composite structures", Constr. Build. Mater., 53, 533-546. https://doi.org/10.1016/j.conbuildmat.2013.12.011.
  51. Xue, D., Liu, Y., Yu, Z. and He, J. (2012), "Static behavior of multi-stud shear connectors for steel-concrete composite bridge", J. Constr. Steel Res., 74, 1-7. https://doi.org/10.1016/j.jcsr.2011.09.017.
  52. Xue, W., Ding, M., Wang, H., and Luo, Z. (2008), "Static Behavior and Theoretical Model of Stud Shear Connectors", J. Bridge Eng., 13(6), 623-634. https://doi.org/10.1061/(ASCE)1084-0702(2008)13:6(623).
  53. Yun, X. and Gardner, L. (2017), "Stress-strain curves for hotr-olled steels", J. Constr. Steel Res., 133, 36-46. https://doi.org/10.1016/j.jcsr.2017.01.024.

Cited by

  1. Space grillage analysis model of steel-concrete composite beam vol.40, pp.2, 2021, https://doi.org/10.12989/scs.2021.40.2.255
  2. Analysis of Equivalent Flexural Stiffness of Steel-Concrete Composite Beams in Frame Structures vol.11, pp.21, 2021, https://doi.org/10.3390/app112110305