Acknowledgement
This project was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the research project No 16794/01/2020.
References
- Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., 35(1), 147-57. https://doi.org/10.12989/scs.2020.35.1.147.
- Agranat, V.M. (1988), "Effect of pressure gradient on friction and heat transfer in a dusty boundary layer", Fluid Dyn., 23, 729-732. http://dx.doi.org/10.1007/BF02614150.
- Akgoz, B. and Civalek, O. (2011), "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., 11(5), 403-421. https://doi.org/10.12989/scs.2011.11.5.403.
- Al-Maliki, A.F., Ahmed, R.A., Moustafa, N.M. and Faleh, N.M. (2020), "Finite element based modeling and thermal dynamic analysis of functionally graded graphene reinforced beams", Adv. Comput. Design, 5(2), 177-193. https://doi.org/10.12989/acd.2020.5.2.177.
- Atilla, O. and Emrah, M. (2017), "Static analysis of laminated composite beams based on higher-order shear deformation theory by using mixed-type finite element method", Int. J. Mech. Sci., 130, 234-243. DOI: 10.1016/j.ijmecsci.2017.06.013
- Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
- Baaskaran, N., Ponappa, K. and Shankar, S. (2018), "Assessment of dynamic crushing and energy absorption characteristics of thin-walled cylinders due to axial and oblique impact load", Steel Compos. Struct., 28(2), 179-194. https://doi.org/10.12989/scs.2018.28.2.179.
- Batou, B., Nebab, M., Bennai, R., Atmane, H.A., Tounsi, A. and Bouremana, M. (2019). Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.
- Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S. and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., 7(6), 443-457. https://doi.org/10.12989/anr.2019.7.6.443.
- Chakrabarti, K.M. (1974), "Note on Boundary layer in a dusty gas", Am. Inst. Aeronaut. Astronaut. J., 12, 1136-1137. http://dx.doi.org/10.2514/3.49427
- Chen, J., Zhuang, Y., Fang, H., Liu, W., Zhu, L. and Fan, Z. (2019a), "Energy absorption of foam-filled lattice composite cylinders under lateral compressive loading", Steel Compos. Struct., 31(2), 133-148. https://doi.org/10.12989/scs.2019.31.2.133.
- Chen, W., Ji, C., Alam, M.M. and Xu, D. (2019b), "Flow-induced vibrations of three circular cylinders in an equilateral triangular arrangement subjected to cross-flow", Wind Struct., 29(1), 43-53. https://doi.org/10.12989/was.2019.29.1.043.
- Civalek, O. (2017), "Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method", Compos. Part B: Eng., 111, 45-59. https://doi.org/10.1016/j.compositesb.2016.11.030
- Derakhshandeh1a, J.F. and Alam, M.M. (2020), "Reynolds number effect on the flow past two tandem cylinders", Wind Struct., 30(5), 475-483. https://doi.org/10.12989/was.2020.30.5.475.
- Ebrahimi, F., Dabbagh, A., Rabczuk, T. and Tornabene, F. (2019), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity-dependent homogenization scheme", Adv. Nano Res., 7(2), 135-143. https://doi.org/10.12989/anr.2019.7.2.135.
- Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., 7(1), 39-49. https://doi.org/10.12989/anr.2019.7.1.039.
- Emrah Madenci, Yasin Onuralp Ozkilic, Lokman Gemi, (2020b), "Experimental and theoretical investigation on flexure performance of pultruded GFRP composite beams with damage analyses", Compos. Struct., 242, 112162. DOI:10.1016/j.compstruct.2020.112162
- Emrah Madenci, Yasin Onuralp Ozkilic, Lokman Gemi, (2020c), "Buckling and free vibration analyses of pultruded GFRP laminated composites: Experimental, numerical and analytical investigations", Compos. Struct., 254, 112806. DOI:10.1016/j.compstruct.2020.112806.
- Gemi, L. (2018), "Investigation of the effect of stacking sequence on low velocity impact response and damage formation in hybrid composite pipes under internal pressure. A comparative study", Compos. Part B: Eng., 153, 217-232. https://doi.org/10.1016/j.compositesb.2018.07.056
- Gemi, L., Koklu, U., Yazman, S. and Morkavuk, S. (2020a), "The effects of stacking sequence on drilling machinability of filament wound hybrid composite pipes: Part-1 mechanical characterization and drilling tests", Compos. Part B: Eng., 186, 107787. https://doi.org/10.1016/j.compositesb:2020.107787.
- Gemi, L., Koroglu, M.A. and Ashour, A. (2018), "Experimental study on compressive behavior and failure analysis of composite concrete confined by glass/epoxy±55 filament wound pipes", Compos. Struct., 187, 157-168. https://doi.org/10.1016/j.compstruct.2017.12.049
- Gemi, L., Morkavuk, S., Koklu, U. and Gemi, D.S. (2019), "An experimental study on the effects of various drill types on drilling performance of GFRP composite pipes and damage formation", Compos. Part B: Eng., 172, 186-194. https://doi.org/10.1016/j.compositesb.2019.05.023
- Gemi, L., Morkavuk, S., Koklu, U. and Yazman, S. (2020b), "The effects of stacking sequence on drilling machinability of filament wound hybrid composite pipes: Part-2 damage analysis and surface quality", Compos. Struct., 235, 111737. https://doi.org/ 10.1016/j.compstruct.2019.111737.
- Gemi, L., Sahin, O.S. and Akdemir, A. (2017), "Experimental investigation of fatigue damage formation of hybrid pipes subjected to impact loading under internal pre-stress", Compos. Part B: Eng., 119, 196-205. https://doi.org/10.1016/j.compositesb.2017.03.051
- Gemi, L., Tarakcioglu, N., Akdemir, A. and Sahin, O.S. (2009), "Progressive fatigue failure behavior of glass/epoxy (±75) 2 filament-wound pipes under pure internal pressure", Mater. Design, 30(10), 4293-4298. https://doi.org/10.1016/j.matdes.2009.04.025
- Iqbal, W., Naeem, M.N. and Jalil, M. (2019), "Numerical analysis of Williamson fluid flow along an exponentially stretching cylinder". AIP Advances, 9(5), 055118, http://dx.doi.org/10.1063/1.5092737.
- Ishak, A. and Nazar, R. (2009), "Laminar boundary layer flow along a stretching cylinder", Eur. J. Sci. Res., 36(1), 22-29.
- Ishak, A., Nazar, R. and Pop, I. (2008), "Uniform suction/ blowing effect on flow and heat transfer due to stretching cylinder", App. Math. Mod., 32, 2059-2066. http://dx.doi.org/10.1016/j.apm.2007.06.036
- Karami B, Janghorban, M. and Tounsi, A. (2018), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.201
- Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., 25(3), 361-374. https://doi.org/10.12989/scs.2017.25.3.361.
- Khan, M. and Malik, R. (2015), "Forced convective heat transfer to Sisko fluid flow past a stretching cylinder", AIP Advances, 5(12), 127202, http://dx.doi.org/10.1063/1.4937346.
- Konch, J. and Hazarika, G.C. (2017), "Unsteady Hydro magnetic flow of dusty fluid over a stretching cylinder with variable viscosity and thermal conductivity", Int. J. Adv. Sci. and Tech., 99, 57-70. http://dx.doi.org/10.14257/ijast.2017.99.05.
- lmtiaz, M., Hayat, T. and Alsaedi, A. (2016), "Mixed convection flow of Casson nanofluid over a stretching cylinder with convective boundary conditions", Adv. Power Tech., 27(5), 2245-2256. https://doi.org/10.1016.j.apt.2016.08.011. https://doi.org/10.1016.j.apt.2016.08.011
- Loghman, A., Faegh, R.K. and Arefi, M. (2018), "Two dimensional time-dependent creep analysis of a thick-walled FG cylinder based on first order shear deformation theory", Steel Compos. Struct., 26(5), 533-547. https://doi.org/10.12989/scs.2018.26.5.533.
- Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889.
- Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.
- Madenci, E. and Gulcu, S. (2020), "Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM", Struct. Eng. Mech., 75(5), 633-642. https://doi.org/10.12989/sem.2020.75.5.633
- Madenci, E. and Ozutok, A. (2020a), "Variational approximate for high order bending analysis of laminated composite plates", Struct. Eng. Mech., 73(1), 97-108. https://doi.org/10.12989/sem.2020.73.1.097.
- Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020d), "Theoretical Investigation on Static Analysis of Pultruded GFRP Composite Beams", Academic Platform J. Eng. Sci., 8(3), 483-490. Doi: 10.21541/apjes.734770.
- Mahdy, A. (2015), "Heat transfer and flow of a Casson fluid due to a stretching cylinder with the soret and dufour effects". J. Eng. Phys. Thermophy., 88(4), 928-936. https://doi.org/10.1007/s10891-015-1267-6.
- Malik, M.Y., Hussain., A., Salahuddin., T., Awais., M., Bilal, S. Khan, F. (2016), "Flow of Sisko fluid over a stretching cylinder and heat transfer with viscous dissipation and variable thermal conductivity: A numerical study", AIP Advances, 6(4), 045118. https://doi.org/10.1063/1.4948458.
- Malik, M.Y., Naseer, M., Nadeem, S. and Rehman, A. (2013), "The boundary layer flow of Casson nanofluid over an exponentially stretching cylinder", Appl. Nanosci., 4, 869-873. https://doi.org/10.1007/s 13204-013-0267-0
- Moghaddam, S.H. and Masoodi, A.R. (2019), "Elastoplastic nonlinear behavior of planar steel gabled frame", Adv. Comput. Design, 4(4), 397-413.: https://doi.org/10.12989/acd.2019.4.4.397.
- Naseer, M., Malik, M.Y., Nadeem, S. and Rehman, A. (2014), "The boundary layer flow of hyperbolic tangent fluid over a vertical exponentially stretching cylinder", Alexandria Eng. J., 53, 747-750. https://doi.org/10.1016/j.aej.2014.05.001.
- Ozkilic, Y.O., Madenci, E. and Gemi, L. (2020), "Tensile and compressive behaviors of the pultruded GFRP lamina", Turkish J. Eng., 4(4), 169-175. DOI: 10.31127/tuje.631481
- Rad, M.H.G., Shahabian, F. and Hosseini, S.M. (2020), "Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder: MLPG method based on a modified nonlinear micromechanical model", Steel Compos. Struct., 35(1), 77-92. https://doi.org/10.12989/scs.2020.35.1.077.
- Rasekh, A., Ganji, D.D., Tavakoli, S., Ehsani, H. and Naeejee, S. (2014), "MHD flow and heat transfer of dusty fluid over a stretching hollow cylinder with a convective boundary conditions", Heat Trans. Asian Res., 43(3), 221-232. https://doi.org/10.1002/htj.21073
- Rebhi, A.D. (2010), "On boundary layer flow of dusty gas from a horizontal circular cylinder", Braz. J. Chem. Eng., 27(4), 653-662. http://dx.doi.org/10.1590/S0104-66322010000400017.
- Rehman, A. (2015), "Boundary layer flow and heat transfer of Micropolar Fluid over a vertical exponentially stretching cylinder", Appl. Comp. Math., 4(6), 424-430. http://dx.doi.org/10.11648/j.acm.20150406.15.
- Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv Nano Res., 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265
- Saffman, P.G. (1962), "On the stability of laminar flow of a dusty gas", J. Fluid Mech., 13, 120-128. https://doi.org/10.1017/S0022112062000555.
- Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A., and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., 33(6), 805-822. https://doi.org/10.12989/scs.2019.33.6.805.
- Salahuddin, T., Malik, M.Y., Hussain, A., Awais, M. and Bilal, S. (2017), "Mixed convection boundary layer flow of Williamson fluid with slip conditions over a stretching cylinder by using Keller-box method", Int. J. Nonlinear Sci. Numer. Simul., 18(1), 9-17. https://doi.org/10.1515/ijnsns.2015.0090.
- Selmi, A. (2019), "Effectiveness of SWNT in reducing the crack effect on the dynamic behavior of aluminium alloy", Adv. Nano Res., 7(5) 365-377. https://doi.org/10.12989/anr.2019.7.5.365.
- Selmi, A. and Bisharat, A. (2018), "Free vibration of functionally graded SWNT reinforced aluminum alloy beam", J. Vibroeng., 20(5), 2151-2164. https://doi.org/10.21595/jve.2018.19445.
- Selmi, A., Friebel, C., Doghri, I. and Hassis, H. (2007), "Prediction of the elastic properties of single walled carbon nanotube reinforced polymers: a comparative study of several micromechanical models", Compos. Sci. Technol., 67, 2071-2084. https://doi.org/10.1016/j.compscitech.2006.11.016
- Shadravan, S., Ramseyer, C.C. and Floyd, R.W. (2019), "Comparison of structural foam sheathing and oriented strand board panels of shear walls under lateral load", Adv. Comput. Design, 4(3), 251-272. https://doi.org/10.12989/acd.2019.4.3.251.
- Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Size-dependent vibration analysis of laminated composite plates", Adv. Nano Res., 7(5), 337-349. https://doi.org/10.12989/anr.2019.7.5.337.
- Sharma, N. and Panda, S.K. (2020a), "Multiphysical numerical (FE-BE) solution of sound radiation responses of laminated sandwich shell panel including curvature effect", Comput. Math. Appl., 80(5), 1221-1239. https://doi.org/10.1016/j.camwa.2020.06.010.
- Sharma, N., Mahapatra, T.R and Panda, S.K. (2017a), "Vibroacoustic behaviour of shear deformable laminated composite flat panel using BEM and the higher order shear deformation theory", Compos. Struct., 180, 116-129. https://doi.org/10.1016/j.compstruct.2017.08.012.
- Sharma, N., Mahapatra, T.R. and Panda, S.K. (2017b), "Numerical study of vibro-acoustic responses of un-baffled multi-layered composite structure under various end conditions and experimental validation", Latin Am. J. Solids Struct., 14(8), 1547-1568. https://doi.org/10.1590/1679-78253830.
- Sharma, N., Mahapatra, T.R. and Panda, S.K. (2017c), "Vibroacoustic analysis of un-baffled curved composite panels with experimental validation", Struct. Eng. Mech., 64(1), 93-107. https://doi.org/10.12989/sem.2017.64.1.093.
- Sharma, N., Mahapatra, T.R. and Panda, S.K. (2018a), "Numerical analysis of acoustic radiation responses of shear deformable laminated composite shell panel in hygrothermal environment", J. Sound Vib., 431, 346-366. https://doi.org/10.1016/j.jsv.2018.06.007.
- Sharma, N., Mahapatra, T.R. and Panda, S.K. (2018b), "Numerical analysis of acoustic radiation properties of laminated composite flat panel in thermal environment: a higher-order finite-boundary element approach", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(18), 3235-3249. https://doi.org/10.1177/0954406217735866
- Sharma, N., Mahapatra, T.R. and Panda, S.K. (2018e), "Thermoacoustic behavior of laminated composite curved panels using higher-order finite-boundary element model", Int. J. Appl. Mech., 10(2), 1850017. https://doi.org/10.1142/S1758825118500175
- Sharma, N., Mahapatra, T.R. and Panda, S.K. (2019a), "Hygrothermal effect on vibroacoustic behaviour of higher-order sandwich panel structure with laminated composite face sheets", Eng. Struct., 197, 109355. https://doi.org/10.1016/j.engstruct.2019.109355
- Sharma, N., Mahapatra, T.R. and Panda, S.K. (2019b), "Vibroacoustic analysis of thermo-elastic laminated composite sandwich curved panel: a higher-order FEM-BEM approach", Int. J. Mech. Mater. Design, 15(2), 271-289 https://doi.org/10.1007/s10999-018-9426-5
- Sharma, N., Mahapatra, T.R., Panda, S.K. and Hirwani, C.K. (2018c), "Acoustic radiation and frequency response of higher-order shear deformable multilayered composite doubly curved shell panel-an experimental validation", Appl. Acoustics, 133, 38-51. https://doi.org/10.1016/j.apacoust.2017.12.013
- Sharma, N., Mahapatra, T.R., Panda, S.K. and Katariya, P. (2020b), "Thermo-acoustic analysis of higher-order shear deformable laminated composite sandwich flat panel", J. Sandw. Struct. Mater., 22(5), 1357-1385. https://doi.org/10.1177/1099636218784846
- Sharma, N., Mahapatra, T.R., Panda, S.K. and Mehar, K. (2018d), "Evaluation of vibroacoustic responses of laminated composite sandwich structure using higher-order finite-boundary element model", Steel Compos. Struct., 28(5), 629-639. https://doi.org/10.12989/scs.2018.28.5.629.
- Simsek M. (2011), "Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059.
- Sofiyev, A.H., Yucel, K., Avcar, M. and Zerin, Z. (2006), "The dynamic stability of orthotropic cylindrical shells with nonhomogenous material properties under axial compressive load varying as a parabolic function of time", J. Reinforced Plast. Compos., 25(18), 1877-1886. https://doi.org/10.1177/0731684406069914.
- Tarakcioglu, N., Gemi, L. and Yapici, A. (2005), "Fatigue failure behavior of glass/epoxy±55 filament wound pipes under internal pressure", Compos. Sci. Technol., 65(3-4), 703-708. https://doi.org/10.1016/j.compscitech.2004.10.002.
- Wang, C.Y. (1988), "Fluid flow due to a stretching cylinder", Phy. Fluids, 31, 466-468. https://doi.org/10.1063/1.866827
- Wang, C.Y. and Ng, C.O. (2011), "Slip flow due to a stretching cylinder", Int. J. Non-Lin. Mech., 46, 1191-1194. https://doi.org/10.1016/j.ijnonlinmec.2011.05.04.