DOI QR코드

DOI QR Code

Flow of casson nanofluid along permeable exponentially stretching cylinder: Variation of mass concentration profile

  • Iqbal, Waheed (Department of Mathematics, Govt. College University Faisalabad) ;
  • Jalil, Mudassar (Department of Mathematics, COMSATS Institute of Information Technology) ;
  • Khadimallah, Mohamed A. (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department) ;
  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad) ;
  • Naeem, Muhammad N. (Department of Mathematics, Govt. College University Faisalabad) ;
  • Naim, Abdullah F. Al (Department of Physics, College of Science, King Faisal University) ;
  • Mahmoud, S.R. (GRC Department, Faculty of Applied studies, King Abdulaziz University) ;
  • Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
  • Received : 2020.12.02
  • Accepted : 2020.12.26
  • Published : 2021.01.10

Abstract

The Runge-Kutta method of 6th-order has been employed in this paper to analyze the flow of Casson nanofluid along permeable exponentially stretching cylinder. The modeled PDEs are changed into nonlinear ODEs through appropriate nonlinear transformations. The aim of the paper is to investigate the effects of different parameters such as Casson fluid parameter, slip parameter, suction parameter, Prandtl number, Lewis number, Brownian motion parameter, and thermophoresis parameter, with the variation of mass concentration profile. Numerical results are attained using a renowned numerical scheme shooting technique and for the authenticity of present methodlogy, the results are verified with earlier open text.

Keywords

Acknowledgement

This project was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the research project No 16794/01/2020.

References

  1. Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., 35(1), 147-57. https://doi.org/10.12989/scs.2020.35.1.147.
  2. Agranat, V.M. (1988), "Effect of pressure gradient on friction and heat transfer in a dusty boundary layer", Fluid Dyn., 23, 729-732. http://dx.doi.org/10.1007/BF02614150.
  3. Akgoz, B. and Civalek, O. (2011), "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., 11(5), 403-421. https://doi.org/10.12989/scs.2011.11.5.403.
  4. Al-Maliki, A.F., Ahmed, R.A., Moustafa, N.M. and Faleh, N.M. (2020), "Finite element based modeling and thermal dynamic analysis of functionally graded graphene reinforced beams", Adv. Comput. Design, 5(2), 177-193. https://doi.org/10.12989/acd.2020.5.2.177.
  5. Atilla, O. and Emrah, M. (2017), "Static analysis of laminated composite beams based on higher-order shear deformation theory by using mixed-type finite element method", Int. J. Mech. Sci., 130, 234-243. DOI: 10.1016/j.ijmecsci.2017.06.013
  6. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
  7. Baaskaran, N., Ponappa, K. and Shankar, S. (2018), "Assessment of dynamic crushing and energy absorption characteristics of thin-walled cylinders due to axial and oblique impact load", Steel Compos. Struct., 28(2), 179-194. https://doi.org/10.12989/scs.2018.28.2.179.
  8. Batou, B., Nebab, M., Bennai, R., Atmane, H.A., Tounsi, A. and Bouremana, M. (2019). Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.
  9. Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S. and Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., 7(6), 443-457. https://doi.org/10.12989/anr.2019.7.6.443.
  10. Chakrabarti, K.M. (1974), "Note on Boundary layer in a dusty gas", Am. Inst. Aeronaut. Astronaut. J., 12, 1136-1137. http://dx.doi.org/10.2514/3.49427
  11. Chen, J., Zhuang, Y., Fang, H., Liu, W., Zhu, L. and Fan, Z. (2019a), "Energy absorption of foam-filled lattice composite cylinders under lateral compressive loading", Steel Compos. Struct., 31(2), 133-148. https://doi.org/10.12989/scs.2019.31.2.133.
  12. Chen, W., Ji, C., Alam, M.M. and Xu, D. (2019b), "Flow-induced vibrations of three circular cylinders in an equilateral triangular arrangement subjected to cross-flow", Wind Struct., 29(1), 43-53. https://doi.org/10.12989/was.2019.29.1.043.
  13. Civalek, O. (2017), "Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method", Compos. Part B: Eng., 111, 45-59. https://doi.org/10.1016/j.compositesb.2016.11.030
  14. Derakhshandeh1a, J.F. and Alam, M.M. (2020), "Reynolds number effect on the flow past two tandem cylinders", Wind Struct., 30(5), 475-483. https://doi.org/10.12989/was.2020.30.5.475.
  15. Ebrahimi, F., Dabbagh, A., Rabczuk, T. and Tornabene, F. (2019), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity-dependent homogenization scheme", Adv. Nano Res., 7(2), 135-143. https://doi.org/10.12989/anr.2019.7.2.135.
  16. Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., 7(1), 39-49. https://doi.org/10.12989/anr.2019.7.1.039.
  17. Emrah Madenci, Yasin Onuralp Ozkilic, Lokman Gemi, (2020b), "Experimental and theoretical investigation on flexure performance of pultruded GFRP composite beams with damage analyses", Compos. Struct., 242, 112162. DOI:10.1016/j.compstruct.2020.112162
  18. Emrah Madenci, Yasin Onuralp Ozkilic, Lokman Gemi, (2020c), "Buckling and free vibration analyses of pultruded GFRP laminated composites: Experimental, numerical and analytical investigations", Compos. Struct., 254, 112806. DOI:10.1016/j.compstruct.2020.112806.
  19. Gemi, L. (2018), "Investigation of the effect of stacking sequence on low velocity impact response and damage formation in hybrid composite pipes under internal pressure. A comparative study", Compos. Part B: Eng., 153, 217-232. https://doi.org/10.1016/j.compositesb.2018.07.056
  20. Gemi, L., Koklu, U., Yazman, S. and Morkavuk, S. (2020a), "The effects of stacking sequence on drilling machinability of filament wound hybrid composite pipes: Part-1 mechanical characterization and drilling tests", Compos. Part B: Eng., 186, 107787. https://doi.org/10.1016/j.compositesb:2020.107787.
  21. Gemi, L., Koroglu, M.A. and Ashour, A. (2018), "Experimental study on compressive behavior and failure analysis of composite concrete confined by glass/epoxy±55 filament wound pipes", Compos. Struct., 187, 157-168. https://doi.org/10.1016/j.compstruct.2017.12.049
  22. Gemi, L., Morkavuk, S., Koklu, U. and Gemi, D.S. (2019), "An experimental study on the effects of various drill types on drilling performance of GFRP composite pipes and damage formation", Compos. Part B: Eng., 172, 186-194. https://doi.org/10.1016/j.compositesb.2019.05.023
  23. Gemi, L., Morkavuk, S., Koklu, U. and Yazman, S. (2020b), "The effects of stacking sequence on drilling machinability of filament wound hybrid composite pipes: Part-2 damage analysis and surface quality", Compos. Struct., 235, 111737. https://doi.org/ 10.1016/j.compstruct.2019.111737.
  24. Gemi, L., Sahin, O.S. and Akdemir, A. (2017), "Experimental investigation of fatigue damage formation of hybrid pipes subjected to impact loading under internal pre-stress", Compos. Part B: Eng., 119, 196-205. https://doi.org/10.1016/j.compositesb.2017.03.051
  25. Gemi, L., Tarakcioglu, N., Akdemir, A. and Sahin, O.S. (2009), "Progressive fatigue failure behavior of glass/epoxy (±75) 2 filament-wound pipes under pure internal pressure", Mater. Design, 30(10), 4293-4298. https://doi.org/10.1016/j.matdes.2009.04.025
  26. Iqbal, W., Naeem, M.N. and Jalil, M. (2019), "Numerical analysis of Williamson fluid flow along an exponentially stretching cylinder". AIP Advances, 9(5), 055118, http://dx.doi.org/10.1063/1.5092737.
  27. Ishak, A. and Nazar, R. (2009), "Laminar boundary layer flow along a stretching cylinder", Eur. J. Sci. Res., 36(1), 22-29.
  28. Ishak, A., Nazar, R. and Pop, I. (2008), "Uniform suction/ blowing effect on flow and heat transfer due to stretching cylinder", App. Math. Mod., 32, 2059-2066. http://dx.doi.org/10.1016/j.apm.2007.06.036
  29. Karami B, Janghorban, M. and Tounsi, A. (2018), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.201
  30. Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., 25(3), 361-374. https://doi.org/10.12989/scs.2017.25.3.361.
  31. Khan, M. and Malik, R. (2015), "Forced convective heat transfer to Sisko fluid flow past a stretching cylinder", AIP Advances, 5(12), 127202, http://dx.doi.org/10.1063/1.4937346.
  32. Konch, J. and Hazarika, G.C. (2017), "Unsteady Hydro magnetic flow of dusty fluid over a stretching cylinder with variable viscosity and thermal conductivity", Int. J. Adv. Sci. and Tech., 99, 57-70. http://dx.doi.org/10.14257/ijast.2017.99.05.
  33. lmtiaz, M., Hayat, T. and Alsaedi, A. (2016), "Mixed convection flow of Casson nanofluid over a stretching cylinder with convective boundary conditions", Adv. Power Tech., 27(5), 2245-2256. https://doi.org/10.1016.j.apt.2016.08.011. https://doi.org/10.1016.j.apt.2016.08.011
  34. Loghman, A., Faegh, R.K. and Arefi, M. (2018), "Two dimensional time-dependent creep analysis of a thick-walled FG cylinder based on first order shear deformation theory", Steel Compos. Struct., 26(5), 533-547. https://doi.org/10.12989/scs.2018.26.5.533.
  35. Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889.
  36. Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.
  37. Madenci, E. and Gulcu, S. (2020), "Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM", Struct. Eng. Mech., 75(5), 633-642. https://doi.org/10.12989/sem.2020.75.5.633
  38. Madenci, E. and Ozutok, A. (2020a), "Variational approximate for high order bending analysis of laminated composite plates", Struct. Eng. Mech., 73(1), 97-108. https://doi.org/10.12989/sem.2020.73.1.097.
  39. Madenci, E., Ozkilic, Y.O. and Gemi, L. (2020d), "Theoretical Investigation on Static Analysis of Pultruded GFRP Composite Beams", Academic Platform J. Eng. Sci., 8(3), 483-490. Doi: 10.21541/apjes.734770.
  40. Mahdy, A. (2015), "Heat transfer and flow of a Casson fluid due to a stretching cylinder with the soret and dufour effects". J. Eng. Phys. Thermophy., 88(4), 928-936. https://doi.org/10.1007/s10891-015-1267-6.
  41. Malik, M.Y., Hussain., A., Salahuddin., T., Awais., M., Bilal, S. Khan, F. (2016), "Flow of Sisko fluid over a stretching cylinder and heat transfer with viscous dissipation and variable thermal conductivity: A numerical study", AIP Advances, 6(4), 045118. https://doi.org/10.1063/1.4948458.
  42. Malik, M.Y., Naseer, M., Nadeem, S. and Rehman, A. (2013), "The boundary layer flow of Casson nanofluid over an exponentially stretching cylinder", Appl. Nanosci., 4, 869-873. https://doi.org/10.1007/s 13204-013-0267-0
  43. Moghaddam, S.H. and Masoodi, A.R. (2019), "Elastoplastic nonlinear behavior of planar steel gabled frame", Adv. Comput. Design, 4(4), 397-413.: https://doi.org/10.12989/acd.2019.4.4.397.
  44. Naseer, M., Malik, M.Y., Nadeem, S. and Rehman, A. (2014), "The boundary layer flow of hyperbolic tangent fluid over a vertical exponentially stretching cylinder", Alexandria Eng. J., 53, 747-750. https://doi.org/10.1016/j.aej.2014.05.001.
  45. Ozkilic, Y.O., Madenci, E. and Gemi, L. (2020), "Tensile and compressive behaviors of the pultruded GFRP lamina", Turkish J. Eng., 4(4), 169-175. DOI: 10.31127/tuje.631481
  46. Rad, M.H.G., Shahabian, F. and Hosseini, S.M. (2020), "Geometrically nonlinear dynamic analysis of FG graphene platelets-reinforced nanocomposite cylinder: MLPG method based on a modified nonlinear micromechanical model", Steel Compos. Struct., 35(1), 77-92. https://doi.org/10.12989/scs.2020.35.1.077.
  47. Rasekh, A., Ganji, D.D., Tavakoli, S., Ehsani, H. and Naeejee, S. (2014), "MHD flow and heat transfer of dusty fluid over a stretching hollow cylinder with a convective boundary conditions", Heat Trans. Asian Res., 43(3), 221-232. https://doi.org/10.1002/htj.21073
  48. Rebhi, A.D. (2010), "On boundary layer flow of dusty gas from a horizontal circular cylinder", Braz. J. Chem. Eng., 27(4), 653-662. http://dx.doi.org/10.1590/S0104-66322010000400017.
  49. Rehman, A. (2015), "Boundary layer flow and heat transfer of Micropolar Fluid over a vertical exponentially stretching cylinder", Appl. Comp. Math., 4(6), 424-430. http://dx.doi.org/10.11648/j.acm.20150406.15.
  50. Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv Nano Res., 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265
  51. Saffman, P.G. (1962), "On the stability of laminar flow of a dusty gas", J. Fluid Mech., 13, 120-128. https://doi.org/10.1017/S0022112062000555.
  52. Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A., and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., 33(6), 805-822. https://doi.org/10.12989/scs.2019.33.6.805.
  53. Salahuddin, T., Malik, M.Y., Hussain, A., Awais, M. and Bilal, S. (2017), "Mixed convection boundary layer flow of Williamson fluid with slip conditions over a stretching cylinder by using Keller-box method", Int. J. Nonlinear Sci. Numer. Simul., 18(1), 9-17. https://doi.org/10.1515/ijnsns.2015.0090.
  54. Selmi, A. (2019), "Effectiveness of SWNT in reducing the crack effect on the dynamic behavior of aluminium alloy", Adv. Nano Res., 7(5) 365-377. https://doi.org/10.12989/anr.2019.7.5.365.
  55. Selmi, A. and Bisharat, A. (2018), "Free vibration of functionally graded SWNT reinforced aluminum alloy beam", J. Vibroeng., 20(5), 2151-2164. https://doi.org/10.21595/jve.2018.19445.
  56. Selmi, A., Friebel, C., Doghri, I. and Hassis, H. (2007), "Prediction of the elastic properties of single walled carbon nanotube reinforced polymers: a comparative study of several micromechanical models", Compos. Sci. Technol., 67, 2071-2084. https://doi.org/10.1016/j.compscitech.2006.11.016
  57. Shadravan, S., Ramseyer, C.C. and Floyd, R.W. (2019), "Comparison of structural foam sheathing and oriented strand board panels of shear walls under lateral load", Adv. Comput. Design, 4(3), 251-272. https://doi.org/10.12989/acd.2019.4.3.251.
  58. Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Size-dependent vibration analysis of laminated composite plates", Adv. Nano Res., 7(5), 337-349. https://doi.org/10.12989/anr.2019.7.5.337.
  59. Sharma, N. and Panda, S.K. (2020a), "Multiphysical numerical (FE-BE) solution of sound radiation responses of laminated sandwich shell panel including curvature effect", Comput. Math. Appl., 80(5), 1221-1239. https://doi.org/10.1016/j.camwa.2020.06.010.
  60. Sharma, N., Mahapatra, T.R and Panda, S.K. (2017a), "Vibroacoustic behaviour of shear deformable laminated composite flat panel using BEM and the higher order shear deformation theory", Compos. Struct., 180, 116-129. https://doi.org/10.1016/j.compstruct.2017.08.012.
  61. Sharma, N., Mahapatra, T.R. and Panda, S.K. (2017b), "Numerical study of vibro-acoustic responses of un-baffled multi-layered composite structure under various end conditions and experimental validation", Latin Am. J. Solids Struct., 14(8), 1547-1568. https://doi.org/10.1590/1679-78253830.
  62. Sharma, N., Mahapatra, T.R. and Panda, S.K. (2017c), "Vibroacoustic analysis of un-baffled curved composite panels with experimental validation", Struct. Eng. Mech., 64(1), 93-107. https://doi.org/10.12989/sem.2017.64.1.093.
  63. Sharma, N., Mahapatra, T.R. and Panda, S.K. (2018a), "Numerical analysis of acoustic radiation responses of shear deformable laminated composite shell panel in hygrothermal environment", J. Sound Vib., 431, 346-366. https://doi.org/10.1016/j.jsv.2018.06.007.
  64. Sharma, N., Mahapatra, T.R. and Panda, S.K. (2018b), "Numerical analysis of acoustic radiation properties of laminated composite flat panel in thermal environment: a higher-order finite-boundary element approach", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(18), 3235-3249. https://doi.org/10.1177/0954406217735866
  65. Sharma, N., Mahapatra, T.R. and Panda, S.K. (2018e), "Thermoacoustic behavior of laminated composite curved panels using higher-order finite-boundary element model", Int. J. Appl. Mech., 10(2), 1850017. https://doi.org/10.1142/S1758825118500175
  66. Sharma, N., Mahapatra, T.R. and Panda, S.K. (2019a), "Hygrothermal effect on vibroacoustic behaviour of higher-order sandwich panel structure with laminated composite face sheets", Eng. Struct., 197, 109355. https://doi.org/10.1016/j.engstruct.2019.109355
  67. Sharma, N., Mahapatra, T.R. and Panda, S.K. (2019b), "Vibroacoustic analysis of thermo-elastic laminated composite sandwich curved panel: a higher-order FEM-BEM approach", Int. J. Mech. Mater. Design, 15(2), 271-289 https://doi.org/10.1007/s10999-018-9426-5
  68. Sharma, N., Mahapatra, T.R., Panda, S.K. and Hirwani, C.K. (2018c), "Acoustic radiation and frequency response of higher-order shear deformable multilayered composite doubly curved shell panel-an experimental validation", Appl. Acoustics, 133, 38-51. https://doi.org/10.1016/j.apacoust.2017.12.013
  69. Sharma, N., Mahapatra, T.R., Panda, S.K. and Katariya, P. (2020b), "Thermo-acoustic analysis of higher-order shear deformable laminated composite sandwich flat panel", J. Sandw. Struct. Mater., 22(5), 1357-1385. https://doi.org/10.1177/1099636218784846
  70. Sharma, N., Mahapatra, T.R., Panda, S.K. and Mehar, K. (2018d), "Evaluation of vibroacoustic responses of laminated composite sandwich structure using higher-order finite-boundary element model", Steel Compos. Struct., 28(5), 629-639. https://doi.org/10.12989/scs.2018.28.5.629.
  71. Simsek M. (2011), "Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059.
  72. Sofiyev, A.H., Yucel, K., Avcar, M. and Zerin, Z. (2006), "The dynamic stability of orthotropic cylindrical shells with nonhomogenous material properties under axial compressive load varying as a parabolic function of time", J. Reinforced Plast. Compos., 25(18), 1877-1886. https://doi.org/10.1177/0731684406069914.
  73. Tarakcioglu, N., Gemi, L. and Yapici, A. (2005), "Fatigue failure behavior of glass/epoxy±55 filament wound pipes under internal pressure", Compos. Sci. Technol., 65(3-4), 703-708. https://doi.org/10.1016/j.compscitech.2004.10.002.
  74. Wang, C.Y. (1988), "Fluid flow due to a stretching cylinder", Phy. Fluids, 31, 466-468. https://doi.org/10.1063/1.866827
  75. Wang, C.Y. and Ng, C.O. (2011), "Slip flow due to a stretching cylinder", Int. J. Non-Lin. Mech., 46, 1191-1194. https://doi.org/10.1016/j.ijnonlinmec.2011.05.04.