Acknowledgement
The research is supported by the Fok Ying Tung Education Foundation (171066), the Fundamental Research Funds for the Central Universities (2019CDQYTM028), 111Project (B18062), Chongqing Science and Technology Bureau (cstc2019jcyj-zdxm0088) and Open Project of Key Laboratory of New Technology for Construction of Cities in Mountain Area (LNTCCMA-20200106).
References
- ABAQUS (2014), ABAQUS/Standard Version 6.14 User's Manual vols. I-III, Dassault Systemes Simulia Corp, Rhode Island, USA.
- BS EN 1993-1-2:2005 (2005), Design of steel structures, part 1-2: general rules-structural fire design, British Standards Institution.
- Cai, Y. and Young, B. (2018), "Bearing resistance design of stainless steel bolted connections at ambient and elevated temperatures", Steel Compo. Struct., 29(2), 273-286. http://dx.doi.org/10.12989/scs.2018.29.2.273
- CECS 200:2006. (2006), Technical specification for fire prevention of steel structures in buildings, China Association for Engineering Construction Standardization; Beijing, China.
- Chen, Z., Liu, X. and Zhou, W. (2018), "Residual bond behavior of high strength concrete-filled square steel tube after elevated temperatures", Steel Compo. Struct., 27(4), 509-523. http://dx.doi.org/10.12989/scs.2018.27.4.509.
- Dennis, L., Yang, J. and Dai, X.H. (2019), "Finite element analysis of concrete filled lean duplex stainless steel columns", Structures, 21, 150-155. https://doi.org/10.1016/j.istruc.2019.01.024.
- Elnaz, T., Manfred, K. and Sascha H. (2018), "The performance of concrete filled steel tube columns under post-earthquake fires", J. Constr. Steel Res., 150(8), 115-128. https://doi.org/10.1016/j.jcsr.2018.07.013.
- Espinos, A., Romero, M.L. and Hospitaler, A. (2010), "Advanced model for predicting the fire response of concrete filled tubular columns", J. Constr. Steel Res., 66(8), 1030-46. https://doi.org/10.1016/j.jcsr.2010.03.002.
- Espinos, A., Romero, M.L. and Hospitaler, A. (2012), "Simple calculation model for evaluating the fire resistance of unreinforced concrete filled tubular columns", Eng. Struct., 42, 231-244. https://doi.org/10.1016/j.engstruct.2012.04.022.
- GB/T 9978.1-2008. (2008), Fire resistance test methods for building elements-part 1: general requirements, National standard of the People's Republic of China; Beijing, China.
- Gernay, T., Millard, A. and Franssen J.M. (2013), "A multiaxial constitutive model for concrete in the fire situation: theoretical formulation", Int. J. Solid. Struct., 50(22-23), 3659-3673. https://doi.org/10.1016/j.ijsolstr.2013.07.013.
- Han, L.H. (2007), Theory and practice of concrete-filled steel tube structure, (2th edition), Science Press, Beijing, China.
- Han, L.H. and Yang, Y.F. (2005), "Cyclic performance of concrete-filled steel CHS columns under flexural loading", J. Constr. Steel Res., 61(4), 423-452. https://doi.org/10.1016/j.jcsr.2004.10.004.
- Hass, R. (1991), On realistic testing of the fire protection technology of steel and cement supports, Translation BHPR/NL/T/1444, Melbourne, Australia.
- He, A., Liang, Y. and Zhao, O. (2020), "Behaviour and residual compression resistances of circular high strength concrete-filled stainless steel tube (HCFSST) stub columns after exposure to fire", Eng. Struct., 203, 109897. https://doi.org/10.1016/j.engstruct.2019.109897.
- Hong S. and Varma A.H. (2009), "Analytical modeling of the standard fire behavior of loaded CFT columns", J. Constr. Steel Res., 65(1), 54-69. https://doi.org/10.1016/j.jcsr.2008.04.008.
- Ibanez, C., Bisby, L., Rush, D., Romero, M.L. and Hospitaler, A. (2019), "Post-heating response of concrete-filled steel tubular columns under sustained loads", Structures, 21, 90-102. https://doi.org/10.1016/j.istruc.2019.04.003.
- Ibanez, C., Romero, M.L. and Hospitaler, A. (2013), "Fiber beam model for fire response simulation of axially loaded concrete filled tubular columns", Eng. Struct., 56, 182-193. https://doi.org/10.1016/j.engstruct.2013.05.004.
- Imani, R., Mosqueda, G. and Bruneau, M. (2015), "Experimental Study on Post-Earthquake Fire Resistance of Ductile Concrete-Filled Double-Skin Tube Columns", ASCE, 141(8), 92-101. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001168.
- Imani, R., Mosqueda, G. and Bruneau, M. (2015), "Finite Element Simulation of Concrete-Filled Double-Skin Tube Columns Subjected to Postearthquake Fires", ASCE, 141(12), 55-69. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001301.
- ISO 834-1. (1999), Fire Resistance Tests-Elements of Building Construction, Part 1: General Requirements, International Organization for Standardization ISO 834, Geneva, Switzerland.
- JGJ/T 101-2015. (2015), Specification for seismic test of buildings, China Architecture & Building Press, Beijing, China.
- Kwon, I.K. and Kwon, Y.B. (2014), "Structural stability of firer-esistant steel (FR490) H-section columns at elevated temperatures", Steel Compos. Struct., 17(1), 105-121. https://doi.org/10.12989/scs.2014.17.1.105.
- Li, G.Q., Han, L.H., Lou, G.B. and Jiang, S.C. (2006), Fire Resistance Design of Steel Structure And Steel-concrete Composite Structure, China Building Industry Press, Beijing, China.
- Li, Q., Wang, W.D. and Mao, W.J. (2017), "Finite element analysis of concrete-filled circular steel tubular columns subjected to post-earthquake fire", J. Build. Struct., 38(S1), 118-125.
- Lie T.T. and Kodur V.K.R. (1996), "Fire Resistance of Steel Columns Filled with Bar-Reinforced Concrete", J. Struct. Eng., 122(1), 30-36. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:1(30).
- Model Code 90. (1993), CEB-FIP. Lausanne, Mai.
- Neuenschwander, M., Knobloch, M. and Fontana, M. (2016), "Suitability of the damage-plasticity modelling concept for concrete at elevated temperatures: Experimental validation with uniaxial cyclic compression tests", Cement Concrete Res., 79(1), 57-75. https://doi.org/10.1016/j.cemconres.2015.07.013.
- Neuenschwander, M., Knobloch, M. and Fontana, M. (2017), "Modeling thermo-mechanical behavior of concrete-filled steel tube columns with solid steel core subjected to fire", Eng. Struct., 136, 180-193. https://doi.org/10.1016/j.engstruct.2017.01.017.
- Neuenschwander, M., Knobloch, M. and Fontana, M. (2017), "ISO Standard Fire Tests of Concrete-Filled Steel Tube Columns with Solid Steel Core", J. Struct. Eng., 143(4), 04016211. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001695.
- Neuenschwander, M., Knobloch, M. and Fontana, M. (2017), "Generic model stress-strain relationship for concrete in compression at elevated temperatures", ACI Mater. J., 114(1), 3-14. https://doi.org/10.14359/51689468.
- Neuenschwander, M., Scandella, C., Knobloch, M. and Fontana, M. (2018), "Experimental validation of the damage-plasticity modeling concept for normal strength concrete in fire", J. Struct. Fire Eng., 9(1), 53-62. https://doi.org/10.1108/jsfe-01-2017-0001.
- Song, Q.Y., Amin, H., Zhao, X.L. and Han, L.H. (2017), "Post-earthquake fire performance of flange-welded/web-bolted steel I-beam to hollow column tubular connections", Thin-Wall. Struct., 116, 113-123. https://doi.org/10.1016/j.tws.2017.03.012.
- Su, M.N., Young, B. and Gardner, L. (2014), "Deformation-based design of aluminium alloy beams", Eng. Struct., 80, 339-349. https://doi.org/10.1016/j.engstruct.2014.08.034.
- Tang, C.W. (2018), "Fire resistance of high strength concrete filled steel tubular columns under combined temperature and loading", Steel Compos. Struct., 27(2), 243-253. https://dx.doi.org/10.12989/scs.2018.27.2.243
- Thomas, J., and Sandeep, T.N. (2018), "Experimental study on circular CFST short columns with intermittently welded stiffeners", Steel Compos. Struct., 29(5), 659-667. https://dx.doi.org/10.12989/scs.2018.29.5.659.
- Tomii, M. and Sakino, K. (1979), "Elasto-plastic behavior of concrete filled square steel tubular beam-columns", Transactions of the Architectural Institute of Japan, 280, 111-120. https://doi.org/10.3130/aijsaxx.280.0_111.
- Wang, Y.C. (2000), "A simple method for calculating the fire resistance of concrete-filled CHS columns", J. Constr. Steel Res., 54(3), 365-386. https://doi.org/10.1016/S0143-974X(99)00061-9.
- Wang, Y.H., Tang, Q. and Nie, X. (2017), "Comparative investigation on influences of concrete material constitutive models on structural behavior", Constr. Build. Mater., 144, 475-483. https://doi.org/10.1016/j.conbuildmat.2017.03.174.
- Xu, L.H., Yang, D.L. and Li, Z.X. (2011), "Strain and energy ratio-based damage model of a steel structure", J. Vib. Shock, 30(7), 218-222. https://doi.org/10.1088/0253-6102/55/2/31.
- Zhou, K. and Han, L.H., (2019), "Modelling the behaviour of concrete-encased concrete-filled steel tube (CFST) columns subjected to full-range fire", Eng. Struct., 183, 265-280. https://doi.org/10.1016/j.engstruct.2018.12.100.
- Zhou, K. and Han, L.H. (2018), "Experimental performance of concrete-encased CFST columns subjected to full-range fire including heating and cooling", Eng. Struct., 165, 331-348. https://doi.org/10.1016/j.engstruct.2018.03.042.