References
- Abdelmalek, A., Bouazza, M., Zidour, M. and Benseddiq, N. (2019), "Hygrothermal Effects on the Free Vibration Behavior of Composite Plate Using nth-Order Shear Deformation Theory: a Micromechanical Approach", Iran J. Sci. Technol. T. Mech. Eng., 43, 61-73. https://doi.org/10.1007/s40997-017-0140-y.
- Abdulrazzaq, M.A., Muhammad, A.K., Kadhim, Z.D. and Faleh, N.M. (2020), "Vibration analysis of nonlocal strain gradient porous FG composite plates coupled by visco-elastic foundation based on DQM", Coupled Syst. Mech., 9(3), 201-217. https://doi.org/10.12989/csm.2020.9.3.201.
- Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
- Akbari, H., Azadi, M. and Fahham, H. (2020), "Free vibration analysis of thick sandwich cylindrical panels with saturated FG-porous core", Mech. Based Design Struct. Machines., 1-19. doi:10.1080/15397734.2020.1748051.
- Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. http://dx.doi.org/10.12989/scs.2015.19.6.1421.
- Akbas, S.D. (2018), "Forced vibration analysis of cracked nanobeams", J. Brazilian Soc. Mech. Sci. Eng., 40(8), 392. https://doi.org/10.1007/s40430-018-1315-1.
- Akbas, S.D. (2019), "Forced vibration analysis of functionally graded sandwich deep beams", Coupled Syst. Mech., 8(3), 259-271. http://dx.doi.org/10.12989/csm.2019.8.3.259.
- Akgoz, B. and Civalek, O. (2013), "Buckling analysis of functionally graded microbeams based on the strain gradient theory", Acta Mechanica, 224(9), 2185-2201. doi:10.1007/s00707-013-0883-5.
- Akgoz, B. and Civalek, O. (2015), "A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory", Acta Mechanica, 226(7), 2277-2294. doi:10.1007/s00707-015-1308-4.
- Al-Maliki, A.F., Faleh, N.M. and Alasadi, A.A. (2019), "Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities", Struct. Monit. Maint., 6(2), 147-159. https://doi.org/10.12989/smm.2019.6.2.147.
- Batou, B., Nebab, M., Bennai, R., Ait Atmane, H., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699. https://doi.org/10.12989/scs.2019.33.5.699.
- Belmahi, S., Zidour, M. and Meradjah, M. (2019), "Small-scale effect on the forced vibration of a nano beam embedded an elastic medium using nonlocal elasticity theory", Adv. Aircraft Spacecraft Sci., 6(1), 1-18. https://doi.org/10.12989/aas.2019.6.1.001.
- Bennai, R and Ait Atmane, H. (2016), "Analysis of Free Vibration of Sandwich BeamsConsider Normal Deformation Effect", Proceedings of the 7th African Conference on Non Destructive Testing ACNDT 2016 & the 5th International Conference on NDT and Materials Industry and Alloys (IC-WNDT-MI)5th.
- Bensattalah, T., Zidour, M. and Daouadji, T.H. (2018), "Analytical analysis for the forced vibration of CNT surrounding elastic medium including thermal effect using nonlocal Euler-Bernoulli theory", Adv. Mater. Res., 7(3), 163-174. https://doi.org/10.12989/amr.2018.7.3.163.
- Bensattalah, T., Zidour, M. and Daouadji, T.H. (2019), "A new nonlocal beam model for free vibration analysis of chiral single-walled carbon nanotubes", Compos. Mater. Eng., 1(1), 21-31. https://doi.org/10.12989/cme.2019.1.1.021.
- Boulal, A., Bensattalah, T., Karas, A., Zidour, M., Heireche, H. and Adda Bedia, E.A. (2020), "Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle", Struct. Eng. Mech., 73(2), 209-223. https://doi.org/10.12989/sem.2020.73.2.209.
- Carrera, E., Brischetto, S., Cinefra, M. and Soave, M. (2011), "Effects of thickness stretching in functionally graded plates and shells", Compos. Part B: Eng., 42(2), 123-133. doi:10.1016/j.compositesb.2010.10.005.
- Chami, K, Messafer, T. and Hadji, L. (2020), "Analytical modeling of bending and free vibration of thick advanced composite beams resting on Winkler-Pasternak elastic foundation", Earthq. Struct., 19(2), 91-101. https://doi.org/10.12989/eas.2020.19.2.091.
- Cong, P.H., Chien, T.M., Khoa, N.D. and Duc, N.D. (2018), "Nonlinear thermomechanical buckling and postbuckling response of porous FGM plates using Reddy's HSDT", Aerosp. Sci. Technol., 77, 419-428. doi:10.1016/j.ast.2018.03.020.
- Coskun, S., Kim, J. and Toutanji, H. (2019), "Bending, Free Vibration, and Buckling Analysis of Functionally Graded Porous Micro-Plates Using a General Third-Order Plate Theory", J. Compos. Sci., 3(1), 15. doi:10.3390/jcs3010015.
- Daouadji, T.H., Adim. B. and Benferhat. B. (2018), "Bending analysis of an imperfect FGM plates under hygro-thermo-mechanical loading with analytical validation", Adv. Mater. Res., 5(1), 35-53. DOI:http://dx.doi.org/10.12989/amr.2016.5.1.035.
- Eltaher, M.A., Fouda, N., El-midany, T. and Sadoun, A.M. (2018), "Modified porosity model in analysis of functionally graded porous nanobeams", J. Brazilian Soc. Mech. Sci. Eng., 40(3), 141. doi:10.1007/s40430-018-1065-0.
- Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007.
- Fenjan, R.M., Ahmed, R.A., Faleh, N.M. and Hani, F.M. (2020b), "Dynamic response of size-dependent porous functionally graded beams under thermal and moving load using a numerical approach", Struct. Monit. Maint., 7(2), 69-84. https://doi.org/10.12989/smm.2020.7.2.069.
- Fenjan, R.M., Moustafa, N.M. and Faleh, N.M. (2020a), "Scale-dependent thermal vibration analysis of FG beams having porosities based on DQM", Adv. Nano Res., 8(4), 283-292. https://dx.doi.org/10.12989/anr.2020.8.4.283.
- Forsat, M., Badnava, S., Mirjavadi, S.S., Barati, M.R. and Hamouda, A.M.S. (2020), "Small scale effects on transient vibrations of porous FG cylindrical nanoshells based on nonlocal strain gradient theory", Eur. Phys. J. Plus., 135(1). doi:10.1140/epjp/s13360-019-00042-x.
- Gafour, Y., Hamidi, A., Benahmed, A., Zidour, M. and Bensattalah, T. (2020), "Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle", Adv. Nano Res., 8(1), 37-47. https://doi.org/10.12989/anr.2020.8.1.037.
- Ghandourah, E.E. and Abdraboh, A.M. (2020), "Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models", Steel Compos. Struct., 36(3), 293-305. https://dx.doi.org/10.12989/scs.2020.36.3.293.
- Hadji, L. (2020), "Vibration analysis of FGM beam: Effect of the micromechanical models", Coupled Syst. Mech., 9(3), 265-280. https://doi.org/10.12989/csm.2020.9.3.265.
- Hadji, L. and Bernard, F. (2020), "Bending and free vibration analysis of functionally graded beams on elastic foundations with analytical validation", Adv. Mater. Res., 9(1), 63-98. https://doi.org/10.12989/amr.2020.9.1.063.
- Hadji, L., Zouatnia, N. and Bernard, F. (2019), "An analytical solution for bending and free vibration responses of functionally graded beams with porosities: Effect of the micromechanical models", Struct. Eng. Mech., 69(2), 231-241. https://doi.org/10.12989/sem.2019.69.2.231.
- Hamed, M.A., Abo-bakr R.M., Mohamed, S.A. and Eltaher, M.A. (2020), "Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core", Eng. with Comput., doi:10.1007/s00366-020-01023-w.
- Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089.
- Heshmati, M. and Daneshmand, F. (2018), "A study on the vibrational properties of weight-efficient plates made of material with functionally graded porosity", Compos. Struct., 200, 229-238. doi:10.1016/j.compstruct.2018.05.099.
- Karami, B., Shahsavari, D. and Li, L. (2017), "Temperature-dependent flexural wave propagation in nanoplate-type porous heterogenous material subjected to in-plane magnetic field", J. Therm. Stresses., 41(4), 483-499. doi:10.1080/01495739.2017.1393781.
- Karami, B., Shahsavari, D. and Janghorban, M. (2019), "On the dynamics of porous doubly-curved nanoshells", Int. J. Eng. Sci., 143, 39-55. https://doi.org/10.1016/j.ijengsci.2019.06.014
- Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2020), "Free vibration analysis of FG nanoplate with poriferous imperfection in hygrothermal environment", Struct. Eng. Mech., 73(2), 191-207. https://doi.org/10.12989/sem.2020.73.2.191.
- Karami, B., Shahsavari, D., Nazemosadat, S.M.R., Li, L. and Ebrahimi, A. (2018), "Thermal buckling of smart porous functionally graded nanobeam rested on Kerr foundation", Steel Compos. Struct., 29(3), 349-362. https://doi.org/10.12989/scs.2018.29.3.349.
- Kim, J., Zur, K.K. and Reddy, J.N. (2018), "Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates", Compos. Struct., 209, 879-888. doi:10.1016/j.compstruct.2018.11.023.
- Kiran, S.C. and Kattimani, M.C. (2018), "Assessment of porosity influence on vibration and static behavior of functionallygraded magneto-electro-elastic plate: A finite element study", Eur. J. Mech. A Solids., 71, 258-277. https://doi.org/10.1016/j.euromechsol.2018.04.006.
- Mantari, J.L. and Granados, E.V. (2015), "Thermoelastic analysis of advanced sandwich plates based on a new quasi-3D hybrid type HSDT with 5 unknowns", Compos. Part B: Eng., 69, 317-334. doi:10.1016/j.compositesb.2014.10.009.
- Merzoug, M., Bourada, M., Sekkal, M., Ali Chaibdra, A., Belmokhtar, C., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. Eng., 22(4), 361-374. DOI: https://doi.org/10.12989/gae.2020.22.4.361
- Mirjavadi, S.S., Forsat, M., Nia, A.F., Badnava, S. and Hamouda, A.M.S. (2020), "Nonlocal strain gradient effects on forced vibrations of porous FG cylindrical nanoshells", Adv. Nano Res., 8(2), 149-156. https://doi.org/10.12989/anr.2020.8.2.149.
- Mota, A.F. and Loja, M.A.R. (2019), "Mechanical Behavior of Porous Functionally Graded Nanocomposite Materials". C. J. Carbon Res. ,5(2), 34. doi:10.3390/c5020034.
- Mota, A.F., Loja, M.A.R., Barbosa, J.I. and Rodrigues, J.A. (2020), "Porous Functionally Graded Plates: An Assessment of the Influence of Shear Correction Factor on Static Behavior", Math. Comput. Appl., 25(2), 25. doi:10.3390/mca25020025.
- Nebab, M., Ait Atmane, H., Bennai, R. and Tahar, B. (2019), "Effect of nonlinear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory", Earthq. Struct., 17(5), 447-462. https://doi.org/10.12989/eas.2019.17.5.447.
- Nebab, M., Benguediab, S., Ait Atmane, H and Bernard, F. (2020), "A simple quasi-3D HDST for dynamic behavior of advanced composite plates with the effect of variables elastic foundations", Geomech. Eng., 22(5), 415-431. https://dx.doi.org/10.12989/gae.2020.22.5.415.
- Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N. and Soares, C.M.M. (2013), "Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique", Compos. Part B: Eng., 44(1), 657-674. doi:10.1016/j.compositesb.2012.01.089.
- Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Roque, C.M.C., Cinefra, M., Jorge, R.M.N. and Soares, C.M.M. (2012), "A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates", Compos. Part B: Eng., 43(2), 711-725. doi:10.1016/j.compositesb.2011.08.009.
- Nguyen, N.V., Nguyen, H.X., Lee, S. and Nguyen-Xuan, H. (2018), "Geometrically nonlinear polygonal finite element analysis of functionally graded porous plates", Adv. Eng. Software., 126, 110-126. doi:10.1016/j.advengsoft.2018.11.005.
- Oner, E., Yaylaci, M. and Birinci, A. (2015), "Analytical solution of a contact problem and comparison with the results from FEM", Struct. Eng. Mech., 54(4), 607-622. https://doi.org/10.12989/sem.2015.54.4.607.
- Rachedi, M.A., Benyoucef, S., Bouhadra, A., Bachir Bouiadjra, R., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. https://doi.org/10.12989/gae.2020.22.1.065
- Ramteke, P.M., Panda, S.K. and Sharma, N. (2019), "Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure", Steel Compos. Struct., 33(6), 865-875. https://dx.doi.org/10.12989/scs.2019.33.6.865.
- Reddy, J.N. (2004), "Mechanics of Laminated Composite Plates and Shells: Theory and Analysis", 2nd ed., CRC Press.
- Rezaei, A.S. and Saidi, A.R. (2015), "Exact solution for free vibration of thick rectangular plates made of porous materials", Compos. Struct., 134, 1051-1060. doi:10.1016/j.compstruct.2015.08.125.
- Rezaei, A.S., Saidi, A.R., Abrishamdari, M. and Mohammadi, M. H.P. (2017), "Natural frequencies of functionally graded plates with porosities via a simple four variable plate theory: An analytical approach", Thin-Wall. Struct., 120, 366-377. doi:10.1016/j.tws.2017.08.003.
- Safa, A., Hadji, L., Bourada, M. and Zouatnia, N. (2019), "Thermal vibration analysis of FGM beams using an efficient shear deformation beam theory", Earthq. Struct., 17(3), 329-336. https://doi.org/10.12989/eas.2019.17.3.329.
- Sahouane, A., Hadji, L. and Bourada, M., (2019), "Numerical analysis for free vibration of functionally graded beams using an original HSDBT", Earthq. Struct., 17(1), 31-37. https://doi.org/10.12989/eas.2019.17.1.031.
- Saidi, H. and Sahla, M. (2019), "Vibration analysis of functionally graded plates with porosity composed of a mixture of Aluminum (Al) and Alumina (Al2O3) embedded in an elastic medium", Frattura ed Integrita Strutturale., 13(50), 286-299. https://doi.org/10.3221/IGF-ESIS.50.24.
- Sellam, S., Draiche, K., Tlidji, Y., Addou, F.Y. and Benachour, A. (2020), "A simple analytical model for free vibration and buckling analysis of orthotropic rectangular plates", Struct. Eng. Mech., 75(2), 157-174. https://doi.org/10.12989/sem.2020.75.2.157.
- Selmi, A. (2020), "Dynamic behavior of axially functionally graded simply supported beams", Smart Struct. Syst., 25(6), 669-678. https://dx.doi.org/10.12989/sss.2020.25.6.669.
- Shahsavari, D., Karami, B. and Li, L. (2018), "A high-order gradient model for wave propagation analysis of porous FG nanoplates", Steel Compos. Struct., 29(1), 53-66. https://doi.org/10.12989/scs.2018.29.1.053.
- Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., 8(2), 135-148. https://doi.org/10.12989/anr.2020.8.2.135.
- Thai, H.T. and Choi, D.H. (2013), "Finite element formulation of various four unknown shear deformation theories for functionally graded plates", Finite Elem. Anal. Des., 75, 50-61. doi:10.1016/j.finel.2013.07.003.
- Thai, H.T. and Vo, T.P. (2013), "A new sinusoidal shear deformation theory for bending, buckling, and vibration of functionally graded plates", Appl. Math. Model., 37(5), 3269-3281. doi:10.1016/j.apm.2012.08.008.
- Timesli, A. (2020a), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete, 26(1), 53-62. http://dx.doi.org/10.12989/cac.2020.26.1.053
- Timesli, A. (2020b), "Buckling analysis of double walled carbon nanotubes embedded in Kerr elastic medium under axial compression using the nonlocal Donnell shell theory", Adv. Nano Res., 9(2), 69-82. https://doi.org/10.12989/anr.2020.9.2.069.
- Wattanasakulpong, N., Gangadhara Prusty, B., Kelly, D.W. and Hoffman, M. (2012), "Free vibration analysis of layered functionally graded beams with experimental validation", Mater. Design., 36, 182-190. doi:10.1016/j.matdes.2011.10.049.
- Yaylaci, E.U., Yaylaci, M., Olmez, H. and Birinci, A. (2020), "Artificial neural network calculations for a receding contact problem", Comput. Concrete, 25(6), 551-563. https://doi.org/10.12989/CAC.2020.25.6.551.
- Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org/10.12989/sem.2016.57.6.1143.
- Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114. https://doi.org/10.12989/cac.2020.26.2.107.
- Yaylaci, M. and Birinci, A. (2013), "The receding contact problem of two elastic layers supported by two elastic quarter planes", Struct. Eng. Mech., 48(2), 241-255. https://doi.org/10.12989/sem.2013.48.2.241.
- Yaylaci, M., Terzi, C. and Avcar, M. (2019), "Numerical analysis of the receding contact problem of two bonded layers resting on an elastic half plane", Struct. Eng. Mech., 72(6), 775-783. https://doi.org/10.12989/sem.2019.72.6.775.
- Zenkour, A.M. and Radwan, A.F. (2018), "Compressive study of functionally graded plates resting on Winkler-Pasternak foundations under various boundary conditions using hyperbolic shear deformation theory", Arch. Civil Mech. Eng., 18(2), 645-658. doi:10.1016/j.acme.2017.10.003.
- Zhang, Y. and Wang, J. (2017), "Fabrication of Functionally Graded Porous Polymer Structures using Thermal Bonding Lamination Techniques", Procedia Manufacturing., 10, 866-875. doi:10.1016/j.promfg.2017.07.073.
- Zhao, J., Wang, Q., Deng, X., Choe, K., Zhong, R. and Shuai, C. (2019), "Free vibrations of functionally graded porous rectangular plate with uniform elastic boundary conditions", Compos. Part B: Eng., 168, 106-120. doi:10.1016/j.compositesb.2018.12.044.
- Zhu, J., Lai, Z., Yin, Z., Jeon, J. and Lee, S. (2001), "Fabrication of ZrO2-NiCr functionally graded material by powder metallurgy", Mater. Chemistry Phys., 68(1-3), 130-135. doi:10.1016/s0254-0584(00)00355-2.
Cited by
- The Third-Order Shear Deformation Theory for Modeling the Static Bending and Dynamic Responses of Piezoelectric Bidirectional Functionally Graded Plates vol.2021, 2021, https://doi.org/10.1155/2021/5520240
- On the Finite Element Model of Rotating Functionally Graded Graphene Beams Resting on Elastic Foundation vol.2021, 2021, https://doi.org/10.1155/2021/1586388
- Free Vibration Exploration of Rotating FGM Porosity Beams under Axial Load considering the Initial Geometrical Imperfection vol.2021, 2021, https://doi.org/10.1155/2021/5519946
- Free Vibration Investigations of Rotating FG Beams Resting on Elastic Foundation with Initial Geometrical Imperfection in Thermal Environments vol.2021, 2021, https://doi.org/10.1155/2021/5533920
- A numerical solution to thermo‐mechanical behavior of temperature dependent rotating functionally graded annulus disks vol.93, pp.4, 2021, https://doi.org/10.1108/aeat-01-2021-0012
- Free vibration analysis of open-cell FG porous beams: analytical, numerical and ANN approaches vol.40, pp.2, 2021, https://doi.org/10.12989/scs.2021.40.2.157
- Computational analysis of the nonlinear vibrational behavior of perforated plates with initial imperfection using NURBS-based isogeometric approach vol.8, pp.5, 2021, https://doi.org/10.1093/jcde/qwab043
- Compressive mechanical behavior and model of composite elastic-porous metal materials vol.8, pp.12, 2021, https://doi.org/10.1088/2053-1591/ac40b5