DOI QR코드

DOI QR Code

Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation

  • Guellil, Moustafa (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Saidi, Hayat (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Bourada, Fouad (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Bousahla, Abdelmoumen Anis (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes) ;
  • Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University) ;
  • Al-Zahrani, Mesfer Mohammad (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals) ;
  • Hussain, Muzamal (Department of Mathematics, Government College University Faisalabad) ;
  • Mahmoud, S.R. (GRC Department, Jeddah Community College, King Abdulaziz University)
  • Received : 2020.08.17
  • Accepted : 2020.12.09
  • Published : 2021.01.10

Abstract

In this paper, a higher order shear deformation theory for bending analysis of functionally graded plates resting on Pasternak foundation and under various boundary conditions is exposed. The proposed theory is based on the assumption that porosities can be produced within functionally graded plate which may lead to decline in strength of materials. In this research a novel distribution of porosity according to the thickness of FG plate are supposing. Governing equations of the present theory are derived by employing the virtual work principle, and the closed-form solutions of functionally graded plates have been obtained using Navier solution. Numerical results for deflections and stresses of several types of boundary conditions are presented. The exactitude of the present study is confirmed by comparing the obtained results with those available in the literature. The effects of porosity parameter, slenderness ratio, foundation parameters, power law index and boundary condition types on the deflections and stresses are presented.

Keywords

References

  1. Abdelmalek, A., Bouazza, M., Zidour, M. and Benseddiq, N. (2019), "Hygrothermal Effects on the Free Vibration Behavior of Composite Plate Using nth-Order Shear Deformation Theory: a Micromechanical Approach", Iran J. Sci. Technol. T. Mech. Eng., 43, 61-73. https://doi.org/10.1007/s40997-017-0140-y.
  2. Abdulrazzaq, M.A., Muhammad, A.K., Kadhim, Z.D. and Faleh, N.M. (2020), "Vibration analysis of nonlocal strain gradient porous FG composite plates coupled by visco-elastic foundation based on DQM", Coupled Syst. Mech., 9(3), 201-217. https://doi.org/10.12989/csm.2020.9.3.201.
  3. Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
  4. Akbari, H., Azadi, M. and Fahham, H. (2020), "Free vibration analysis of thick sandwich cylindrical panels with saturated FG-porous core", Mech. Based Design Struct. Machines., 1-19. doi:10.1080/15397734.2020.1748051.
  5. Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. http://dx.doi.org/10.12989/scs.2015.19.6.1421.
  6. Akbas, S.D. (2018), "Forced vibration analysis of cracked nanobeams", J. Brazilian Soc. Mech. Sci. Eng., 40(8), 392. https://doi.org/10.1007/s40430-018-1315-1.
  7. Akbas, S.D. (2019), "Forced vibration analysis of functionally graded sandwich deep beams", Coupled Syst. Mech., 8(3), 259-271. http://dx.doi.org/10.12989/csm.2019.8.3.259.
  8. Akgoz, B. and Civalek, O. (2013), "Buckling analysis of functionally graded microbeams based on the strain gradient theory", Acta Mechanica, 224(9), 2185-2201. doi:10.1007/s00707-013-0883-5.
  9. Akgoz, B. and Civalek, O. (2015), "A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory", Acta Mechanica, 226(7), 2277-2294. doi:10.1007/s00707-015-1308-4.
  10. Al-Maliki, A.F., Faleh, N.M. and Alasadi, A.A. (2019), "Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities", Struct. Monit. Maint., 6(2), 147-159. https://doi.org/10.12989/smm.2019.6.2.147.
  11. Batou, B., Nebab, M., Bennai, R., Ait Atmane, H., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699. https://doi.org/10.12989/scs.2019.33.5.699.
  12. Belmahi, S., Zidour, M. and Meradjah, M. (2019), "Small-scale effect on the forced vibration of a nano beam embedded an elastic medium using nonlocal elasticity theory", Adv. Aircraft Spacecraft Sci., 6(1), 1-18. https://doi.org/10.12989/aas.2019.6.1.001.
  13. Bennai, R and Ait Atmane, H. (2016), "Analysis of Free Vibration of Sandwich BeamsConsider Normal Deformation Effect", Proceedings of the 7th African Conference on Non Destructive Testing ACNDT 2016 & the 5th International Conference on NDT and Materials Industry and Alloys (IC-WNDT-MI)5th.
  14. Bensattalah, T., Zidour, M. and Daouadji, T.H. (2018), "Analytical analysis for the forced vibration of CNT surrounding elastic medium including thermal effect using nonlocal Euler-Bernoulli theory", Adv. Mater. Res., 7(3), 163-174. https://doi.org/10.12989/amr.2018.7.3.163.
  15. Bensattalah, T., Zidour, M. and Daouadji, T.H. (2019), "A new nonlocal beam model for free vibration analysis of chiral single-walled carbon nanotubes", Compos. Mater. Eng., 1(1), 21-31. https://doi.org/10.12989/cme.2019.1.1.021.
  16. Boulal, A., Bensattalah, T., Karas, A., Zidour, M., Heireche, H. and Adda Bedia, E.A. (2020), "Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle", Struct. Eng. Mech., 73(2), 209-223. https://doi.org/10.12989/sem.2020.73.2.209.
  17. Carrera, E., Brischetto, S., Cinefra, M. and Soave, M. (2011), "Effects of thickness stretching in functionally graded plates and shells", Compos. Part B: Eng., 42(2), 123-133. doi:10.1016/j.compositesb.2010.10.005.
  18. Chami, K, Messafer, T. and Hadji, L. (2020), "Analytical modeling of bending and free vibration of thick advanced composite beams resting on Winkler-Pasternak elastic foundation", Earthq. Struct., 19(2), 91-101. https://doi.org/10.12989/eas.2020.19.2.091.
  19. Cong, P.H., Chien, T.M., Khoa, N.D. and Duc, N.D. (2018), "Nonlinear thermomechanical buckling and postbuckling response of porous FGM plates using Reddy's HSDT", Aerosp. Sci. Technol., 77, 419-428. doi:10.1016/j.ast.2018.03.020.
  20. Coskun, S., Kim, J. and Toutanji, H. (2019), "Bending, Free Vibration, and Buckling Analysis of Functionally Graded Porous Micro-Plates Using a General Third-Order Plate Theory", J. Compos. Sci., 3(1), 15. doi:10.3390/jcs3010015.
  21. Daouadji, T.H., Adim. B. and Benferhat. B. (2018), "Bending analysis of an imperfect FGM plates under hygro-thermo-mechanical loading with analytical validation", Adv. Mater. Res., 5(1), 35-53. DOI:http://dx.doi.org/10.12989/amr.2016.5.1.035.
  22. Eltaher, M.A., Fouda, N., El-midany, T. and Sadoun, A.M. (2018), "Modified porosity model in analysis of functionally graded porous nanobeams", J. Brazilian Soc. Mech. Sci. Eng., 40(3), 141. doi:10.1007/s40430-018-1065-0.
  23. Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007.
  24. Fenjan, R.M., Ahmed, R.A., Faleh, N.M. and Hani, F.M. (2020b), "Dynamic response of size-dependent porous functionally graded beams under thermal and moving load using a numerical approach", Struct. Monit. Maint., 7(2), 69-84. https://doi.org/10.12989/smm.2020.7.2.069.
  25. Fenjan, R.M., Moustafa, N.M. and Faleh, N.M. (2020a), "Scale-dependent thermal vibration analysis of FG beams having porosities based on DQM", Adv. Nano Res., 8(4), 283-292. https://dx.doi.org/10.12989/anr.2020.8.4.283.
  26. Forsat, M., Badnava, S., Mirjavadi, S.S., Barati, M.R. and Hamouda, A.M.S. (2020), "Small scale effects on transient vibrations of porous FG cylindrical nanoshells based on nonlocal strain gradient theory", Eur. Phys. J. Plus., 135(1). doi:10.1140/epjp/s13360-019-00042-x.
  27. Gafour, Y., Hamidi, A., Benahmed, A., Zidour, M. and Bensattalah, T. (2020), "Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle", Adv. Nano Res., 8(1), 37-47. https://doi.org/10.12989/anr.2020.8.1.037.
  28. Ghandourah, E.E. and Abdraboh, A.M. (2020), "Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models", Steel Compos. Struct., 36(3), 293-305. https://dx.doi.org/10.12989/scs.2020.36.3.293.
  29. Hadji, L. (2020), "Vibration analysis of FGM beam: Effect of the micromechanical models", Coupled Syst. Mech., 9(3), 265-280. https://doi.org/10.12989/csm.2020.9.3.265.
  30. Hadji, L. and Bernard, F. (2020), "Bending and free vibration analysis of functionally graded beams on elastic foundations with analytical validation", Adv. Mater. Res., 9(1), 63-98. https://doi.org/10.12989/amr.2020.9.1.063.
  31. Hadji, L., Zouatnia, N. and Bernard, F. (2019), "An analytical solution for bending and free vibration responses of functionally graded beams with porosities: Effect of the micromechanical models", Struct. Eng. Mech., 69(2), 231-241. https://doi.org/10.12989/sem.2019.69.2.231.
  32. Hamed, M.A., Abo-bakr R.M., Mohamed, S.A. and Eltaher, M.A. (2020), "Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core", Eng. with Comput., doi:10.1007/s00366-020-01023-w.
  33. Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089.
  34. Heshmati, M. and Daneshmand, F. (2018), "A study on the vibrational properties of weight-efficient plates made of material with functionally graded porosity", Compos. Struct., 200, 229-238. doi:10.1016/j.compstruct.2018.05.099.
  35. Karami, B., Shahsavari, D. and Li, L. (2017), "Temperature-dependent flexural wave propagation in nanoplate-type porous heterogenous material subjected to in-plane magnetic field", J. Therm. Stresses., 41(4), 483-499. doi:10.1080/01495739.2017.1393781.
  36. Karami, B., Shahsavari, D. and Janghorban, M. (2019), "On the dynamics of porous doubly-curved nanoshells", Int. J. Eng. Sci., 143, 39-55. https://doi.org/10.1016/j.ijengsci.2019.06.014
  37. Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2020), "Free vibration analysis of FG nanoplate with poriferous imperfection in hygrothermal environment", Struct. Eng. Mech., 73(2), 191-207. https://doi.org/10.12989/sem.2020.73.2.191.
  38. Karami, B., Shahsavari, D., Nazemosadat, S.M.R., Li, L. and Ebrahimi, A. (2018), "Thermal buckling of smart porous functionally graded nanobeam rested on Kerr foundation", Steel Compos. Struct., 29(3), 349-362. https://doi.org/10.12989/scs.2018.29.3.349.
  39. Kim, J., Zur, K.K. and Reddy, J.N. (2018), "Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates", Compos. Struct., 209, 879-888. doi:10.1016/j.compstruct.2018.11.023.
  40. Kiran, S.C. and Kattimani, M.C. (2018), "Assessment of porosity influence on vibration and static behavior of functionallygraded magneto-electro-elastic plate: A finite element study", Eur. J. Mech. A Solids., 71, 258-277. https://doi.org/10.1016/j.euromechsol.2018.04.006.
  41. Mantari, J.L. and Granados, E.V. (2015), "Thermoelastic analysis of advanced sandwich plates based on a new quasi-3D hybrid type HSDT with 5 unknowns", Compos. Part B: Eng., 69, 317-334. doi:10.1016/j.compositesb.2014.10.009.
  42. Merzoug, M., Bourada, M., Sekkal, M., Ali Chaibdra, A., Belmokhtar, C., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. Eng., 22(4), 361-374. DOI: https://doi.org/10.12989/gae.2020.22.4.361
  43. Mirjavadi, S.S., Forsat, M., Nia, A.F., Badnava, S. and Hamouda, A.M.S. (2020), "Nonlocal strain gradient effects on forced vibrations of porous FG cylindrical nanoshells", Adv. Nano Res., 8(2), 149-156. https://doi.org/10.12989/anr.2020.8.2.149.
  44. Mota, A.F. and Loja, M.A.R. (2019), "Mechanical Behavior of Porous Functionally Graded Nanocomposite Materials". C. J. Carbon Res. ,5(2), 34. doi:10.3390/c5020034.
  45. Mota, A.F., Loja, M.A.R., Barbosa, J.I. and Rodrigues, J.A. (2020), "Porous Functionally Graded Plates: An Assessment of the Influence of Shear Correction Factor on Static Behavior", Math. Comput. Appl., 25(2), 25. doi:10.3390/mca25020025.
  46. Nebab, M., Ait Atmane, H., Bennai, R. and Tahar, B. (2019), "Effect of nonlinear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory", Earthq. Struct., 17(5), 447-462. https://doi.org/10.12989/eas.2019.17.5.447.
  47. Nebab, M., Benguediab, S., Ait Atmane, H and Bernard, F. (2020), "A simple quasi-3D HDST for dynamic behavior of advanced composite plates with the effect of variables elastic foundations", Geomech. Eng., 22(5), 415-431. https://dx.doi.org/10.12989/gae.2020.22.5.415.
  48. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N. and Soares, C.M.M. (2013), "Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique", Compos. Part B: Eng., 44(1), 657-674. doi:10.1016/j.compositesb.2012.01.089.
  49. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Roque, C.M.C., Cinefra, M., Jorge, R.M.N. and Soares, C.M.M. (2012), "A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates", Compos. Part B: Eng., 43(2), 711-725. doi:10.1016/j.compositesb.2011.08.009.
  50. Nguyen, N.V., Nguyen, H.X., Lee, S. and Nguyen-Xuan, H. (2018), "Geometrically nonlinear polygonal finite element analysis of functionally graded porous plates", Adv. Eng. Software., 126, 110-126. doi:10.1016/j.advengsoft.2018.11.005.
  51. Oner, E., Yaylaci, M. and Birinci, A. (2015), "Analytical solution of a contact problem and comparison with the results from FEM", Struct. Eng. Mech., 54(4), 607-622. https://doi.org/10.12989/sem.2015.54.4.607.
  52. Rachedi, M.A., Benyoucef, S., Bouhadra, A., Bachir Bouiadjra, R., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. https://doi.org/10.12989/gae.2020.22.1.065
  53. Ramteke, P.M., Panda, S.K. and Sharma, N. (2019), "Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure", Steel Compos. Struct., 33(6), 865-875. https://dx.doi.org/10.12989/scs.2019.33.6.865.
  54. Reddy, J.N. (2004), "Mechanics of Laminated Composite Plates and Shells: Theory and Analysis", 2nd ed., CRC Press.
  55. Rezaei, A.S. and Saidi, A.R. (2015), "Exact solution for free vibration of thick rectangular plates made of porous materials", Compos. Struct., 134, 1051-1060. doi:10.1016/j.compstruct.2015.08.125.
  56. Rezaei, A.S., Saidi, A.R., Abrishamdari, M. and Mohammadi, M. H.P. (2017), "Natural frequencies of functionally graded plates with porosities via a simple four variable plate theory: An analytical approach", Thin-Wall. Struct., 120, 366-377. doi:10.1016/j.tws.2017.08.003.
  57. Safa, A., Hadji, L., Bourada, M. and Zouatnia, N. (2019), "Thermal vibration analysis of FGM beams using an efficient shear deformation beam theory", Earthq. Struct., 17(3), 329-336. https://doi.org/10.12989/eas.2019.17.3.329.
  58. Sahouane, A., Hadji, L. and Bourada, M., (2019), "Numerical analysis for free vibration of functionally graded beams using an original HSDBT", Earthq. Struct., 17(1), 31-37. https://doi.org/10.12989/eas.2019.17.1.031.
  59. Saidi, H. and Sahla, M. (2019), "Vibration analysis of functionally graded plates with porosity composed of a mixture of Aluminum (Al) and Alumina (Al2O3) embedded in an elastic medium", Frattura ed Integrita Strutturale., 13(50), 286-299. https://doi.org/10.3221/IGF-ESIS.50.24.
  60. Sellam, S., Draiche, K., Tlidji, Y., Addou, F.Y. and Benachour, A. (2020), "A simple analytical model for free vibration and buckling analysis of orthotropic rectangular plates", Struct. Eng. Mech., 75(2), 157-174. https://doi.org/10.12989/sem.2020.75.2.157.
  61. Selmi, A. (2020), "Dynamic behavior of axially functionally graded simply supported beams", Smart Struct. Syst., 25(6), 669-678. https://dx.doi.org/10.12989/sss.2020.25.6.669.
  62. Shahsavari, D., Karami, B. and Li, L. (2018), "A high-order gradient model for wave propagation analysis of porous FG nanoplates", Steel Compos. Struct., 29(1), 53-66. https://doi.org/10.12989/scs.2018.29.1.053.
  63. Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., 8(2), 135-148. https://doi.org/10.12989/anr.2020.8.2.135.
  64. Thai, H.T. and Choi, D.H. (2013), "Finite element formulation of various four unknown shear deformation theories for functionally graded plates", Finite Elem. Anal. Des., 75, 50-61. doi:10.1016/j.finel.2013.07.003.
  65. Thai, H.T. and Vo, T.P. (2013), "A new sinusoidal shear deformation theory for bending, buckling, and vibration of functionally graded plates", Appl. Math. Model., 37(5), 3269-3281. doi:10.1016/j.apm.2012.08.008.
  66. Timesli, A. (2020a), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete, 26(1), 53-62. http://dx.doi.org/10.12989/cac.2020.26.1.053
  67. Timesli, A. (2020b), "Buckling analysis of double walled carbon nanotubes embedded in Kerr elastic medium under axial compression using the nonlocal Donnell shell theory", Adv. Nano Res., 9(2), 69-82. https://doi.org/10.12989/anr.2020.9.2.069.
  68. Wattanasakulpong, N., Gangadhara Prusty, B., Kelly, D.W. and Hoffman, M. (2012), "Free vibration analysis of layered functionally graded beams with experimental validation", Mater. Design., 36, 182-190. doi:10.1016/j.matdes.2011.10.049.
  69. Yaylaci, E.U., Yaylaci, M., Olmez, H. and Birinci, A. (2020), "Artificial neural network calculations for a receding contact problem", Comput. Concrete, 25(6), 551-563. https://doi.org/10.12989/CAC.2020.25.6.551.
  70. Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org/10.12989/sem.2016.57.6.1143.
  71. Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114. https://doi.org/10.12989/cac.2020.26.2.107.
  72. Yaylaci, M. and Birinci, A. (2013), "The receding contact problem of two elastic layers supported by two elastic quarter planes", Struct. Eng. Mech., 48(2), 241-255. https://doi.org/10.12989/sem.2013.48.2.241.
  73. Yaylaci, M., Terzi, C. and Avcar, M. (2019), "Numerical analysis of the receding contact problem of two bonded layers resting on an elastic half plane", Struct. Eng. Mech., 72(6), 775-783. https://doi.org/10.12989/sem.2019.72.6.775.
  74. Zenkour, A.M. and Radwan, A.F. (2018), "Compressive study of functionally graded plates resting on Winkler-Pasternak foundations under various boundary conditions using hyperbolic shear deformation theory", Arch. Civil Mech. Eng., 18(2), 645-658. doi:10.1016/j.acme.2017.10.003.
  75. Zhang, Y. and Wang, J. (2017), "Fabrication of Functionally Graded Porous Polymer Structures using Thermal Bonding Lamination Techniques", Procedia Manufacturing., 10, 866-875. doi:10.1016/j.promfg.2017.07.073.
  76. Zhao, J., Wang, Q., Deng, X., Choe, K., Zhong, R. and Shuai, C. (2019), "Free vibrations of functionally graded porous rectangular plate with uniform elastic boundary conditions", Compos. Part B: Eng., 168, 106-120. doi:10.1016/j.compositesb.2018.12.044.
  77. Zhu, J., Lai, Z., Yin, Z., Jeon, J. and Lee, S. (2001), "Fabrication of ZrO2-NiCr functionally graded material by powder metallurgy", Mater. Chemistry Phys., 68(1-3), 130-135. doi:10.1016/s0254-0584(00)00355-2.

Cited by

  1. The Third-Order Shear Deformation Theory for Modeling the Static Bending and Dynamic Responses of Piezoelectric Bidirectional Functionally Graded Plates vol.2021, 2021, https://doi.org/10.1155/2021/5520240
  2. On the Finite Element Model of Rotating Functionally Graded Graphene Beams Resting on Elastic Foundation vol.2021, 2021, https://doi.org/10.1155/2021/1586388
  3. Free Vibration Exploration of Rotating FGM Porosity Beams under Axial Load considering the Initial Geometrical Imperfection vol.2021, 2021, https://doi.org/10.1155/2021/5519946
  4. Free Vibration Investigations of Rotating FG Beams Resting on Elastic Foundation with Initial Geometrical Imperfection in Thermal Environments vol.2021, 2021, https://doi.org/10.1155/2021/5533920
  5. A numerical solution to thermo‐mechanical behavior of temperature dependent rotating functionally graded annulus disks vol.93, pp.4, 2021, https://doi.org/10.1108/aeat-01-2021-0012
  6. Free vibration analysis of open-cell FG porous beams: analytical, numerical and ANN approaches vol.40, pp.2, 2021, https://doi.org/10.12989/scs.2021.40.2.157
  7. Computational analysis of the nonlinear vibrational behavior of perforated plates with initial imperfection using NURBS-based isogeometric approach vol.8, pp.5, 2021, https://doi.org/10.1093/jcde/qwab043
  8. Compressive mechanical behavior and model of composite elastic-porous metal materials vol.8, pp.12, 2021, https://doi.org/10.1088/2053-1591/ac40b5