Acknowledgement
The authors are extremely grateful to the anonymous learned referee for his/her keen reading, valuable suggestions and constructive comments for the improvement of the paper.
References
- L. Bernal, Orden relativo de crecimiento de funciones enteras, Collect. Math., 39 (1988), 209-229.
- T. Biswas and C. Biswas, On the Growth Properties of Composite p-adic Entire Functions, Noor Publishing, Chisinau-2068, Republic of Moldova Europe, 133p., 2021.
- T. Biswas, Relative (p, q)-' order oriented some growth properties of p-adic entire functions, J. Fract. Calc. Appl., 11 (1) (2020), 161-169.
- T. Biswas, C. Biswas and R. Biswas, A note on generalized growth analysis of composite entire functions, Poincare J. Anal. Appl., 7 (2) (2020), 257-266.
- T. Biswas and C. Biswas, Generalized (α, β) order based on some growth properties of wronskians, Mat. Stud., 54 (1) (2020), 46-55. https://doi.org/10.30970/ms.54.1.46-55
- T. Biswas, Some growth properties of composite p-adic entire functions on the basis of their relative order and relative lower order, Asian-Eur. J. Math., 12 (3) (2019), 1950044, 15p., https://doi.org/10.1142/S179355711950044X.
- T. Biswas, Some growth aspects of composite p-adicentire functions in the light of their (p, q)-th relative order and (p, q)-th relative type, J. Chungcheong Math. Soc., 31 (4) (2018), 429-460. https://doi.org/10.14403/JCMS.2018.31.1.429
- T. Biswas, On some growth analysis of p-adic entire functions on the basis of their (p, q)-th relative order and (p, q)-th relative lower order, Uzbek Math. J., 2018 (4) (2018), 160-169. https://doi.org/10.29229/uzmj.2018-4-16
- T. Biswas, Relative order and relative type based growth properties of iterated p-adic entire functions, Korean J. Math., 26 (4) (2018), 629-663. https://doi.org/10.11568/KJM.2018.26.4.629
- T. Biswas, A note on (p, q)-th relative order and (p, q)-th relative type of p-adic entire functions, Honam Math. J., 40 (4)(2018), 621-659. https://doi.org/10.5831/HMJ.2018.40.4.621
- T. Biswas, (p, q)-th order oriented growth measurement of composite p-adic entire functions, Carpathian Math. Publ., 10 (2) (2018), 248-272. https://doi.org/10.15330/cmp.10.2.248-272
- K. Boussaf, A. Boutabaa and A. Escassut, Order, type and cotype of growth for p-Adic entire functions, A survey with additional properties, p-Adic Numbers, Ultrametric Anal. Appl., 8 (4), (2016), 280-297. https://doi.org/10.1134/S2070046616040026
- K. Boussaf, A. Boutabaa and A. Escassut, Growth of p-adic entire functions and applications, Houston J. Math., 40 (3) (2014), 715-736.
- A. Escassut, K. Boussaf and A. Boutabaa, Order, type and cotype of growth for p-adic entire functions, Sarajevo J. Math., Dedicated to the memory of Professor Marc Krasner, 12(25) (2) (2016), 429-446, suppl.
- A. Escassut, Value Distribution in p-adic Analysis, World Scientific Publishing Co. Pte. Ltd., Singapore, 2015.
- A. Escassut and J. Ojeda, Exceptional values of p-adic analytic functions and derivative, Complex Var. Elliptic Equ., 56 (1-4) (2011), 263-269. https://doi.org/10.1080/17476930903394945
- A. Escassut, p-adic Value Distribution. Some Topics on Value Distribution and Differentability in Complex and P-adic Analysis, Math. Monogr., Series 11, Science Press, Beijing, (2008), 42-138.
- A. Escassut, Analytic Elements in p-adic Analysis, World Scientific Publishing Co. Pte. Ltd. Singapore, 1995.
- P. C. Hu and C. C. Yang, Meromorphic Functions over non-Archimedean Fields, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000.
- O. P. Juneja, G. P. Kapoor and S. K. Bajpai, On the (p, q)-type and lower (p, q)-type of an entire function, J. Reine Angew. Math., 290 (1977), 180-190.
- O. P. Juneja, G. P. Kapoor and S. K. Bajpai, On the (p,q)-order and lower (p,q)-order of an entire function, J. Reine Angew. Math., 282 (1976), 53-67.
- A. Robert, A Course in p-adic analysis, Graduate texts, Springer, New York, 2000.
- M. N. Sheremeta, Connection between the growth of the maximum of the modulus of an entire function and the moduli of the coefficients of its power series expansion, Izv. Vyssh. Uchebn. Zaved Mat., 2 (1967), 100-108.