DOI QR코드

DOI QR Code

A NEW ALGORITHM FOR VARIATIONAL INCLUSION PROBLEM

  • Dar, Aadil Hussain (Department of Mathematics, Aligarh Muslim University) ;
  • Ahmad, Md. Kalimuddin (Department of Mathematics, Aligarh Muslim University and Department of Mathematics, Faculty of Science, Islamic University of Madinah) ;
  • Salahuddin, Salahuddin (Department of Mathematics, Jazan University)
  • Received : 2021.04.29
  • Accepted : 2021.09.27
  • Published : 2021.12.30

Abstract

The target of this article is to modify the algorithm given by Fang and Huang [6]. The rate of convergence of our algorithm is faster than that of Fang and Huang [6]. A numerical example is given to justify our statement.

Keywords

References

  1. S. Adly, Perturbed algorithm and sensitivity analysis for a general class of variational inclusions, J. Math. Anal. Appl., 201 (1996) 609-630. https://doi.org/10.1006/jmaa.1996.0277
  2. R. Ahmad and Q. H. Ansari, An iterative algorithm for generalized nonlinear variational inclusions, Appl. Math. Lett., 13 (2000) 23-26.
  3. R. Ahmad, Q. H. Ansari and S. S. Irfan, Generalized variational inclusions and generalized resolvent equations in Banach spaces, Comput. Math. Appl., 29 (11-12) (2005) 1825-1835.
  4. H. Brezis, Operateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert, North-Holland Publishing, Amsterdam, The Netherlands, 1973.
  5. X. P. Ding, Perturbed proximal point algorithms for generalized quasi-variational inclusions, J. Math. Anal. Appl., 210 (1997) 88-101. https://doi.org/10.1006/jmaa.1997.5370
  6. Y. P. Fang and N. J. Huang, H-monotone operator and resolvent operator technique for variational inclusions, Appl. Math. Comput., 145 (2003) 795-803. https://doi.org/10.1016/S0096-3003(03)00275-3
  7. Y. P. Fang and N. J. Huang, H-accretive operators and resolvent operator technique for solving variational inclusions in Banach spaces, Appl. Math. Lett., 17 (2004) 647-653. https://doi.org/10.1016/S0893-9659(04)90099-7
  8. F. Giannessi and A. Maugeri, Variational Inequalities and Nework Equilibriun Problems, Plenum, New York, 1995.
  9. R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, Berlin, 1984.
  10. A. Hassouni and A. Moudafi, A perturbed algorithm for variational inclusions, J. Math. Anal. Appl., 185 (1994) 706-712. https://doi.org/10.1006/jmaa.1994.1277
  11. N. J. Huang, A new completely general class of variational inclusions with noncompact valued mappings, Comput. Math. Appl., 35 (10) (1998) 9-14. https://doi.org/10.1016/S0898-1221(98)00067-4
  12. M. A. Noor, Some recent advances in variational inequalities (I), New Zealand J. Math., 26 (1997) 53-80.
  13. M. A. Noor, Some recent advances in variational inequalities (II), New Zealand J. Math., 26 (1997) 229-255.
  14. S. M. Robinson, Generalized equations and their solutions, part (I): basic theory, Math. Program. Stud., 10 (1979) 128-141. https://doi.org/10.1007/BFb0120850
  15. R. T. Rockafellar, Monotone operators and proximal point algorithm, SIAM J. Control Optim. 14 (1976) 877-898. https://doi.org/10.1137/0314056