Acknowledgement
이 논문은 2020년 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임(유산균이 살아있는 고농도 발효 GABA 소금의 개발 및 상용화 계획, 과제번호 20200073).
References
- Bovee, D. M., Cuevas, C. A., Zietse, R., Danser, A. H. J., Mirabito Colafella, K. M., Hoorn, E. J. 2020. Salt-sensitive hypertension in chronic kidney disease: Distal tubular mechanisms. Am. J. Physiol. Renal Physiol. 319, F729-F745 https://doi.org/10.1152/ajprenal.00407.2020
- Majid, D. S., Prieto, M. C., Navar, L. G. 2015. Salt-sensitive hypertension: perspectives on intrarenal mechanisms. Curr. Hypertens. Rev. 11, 38-48. https://doi.org/10.2174/1573402111666150530203858
- Ren, J., Crowley, S. D. 2019. Role of T-cell activation in salt-sensitive hypertension. Am. J. Physiol. Heart Circ. Physiol. 316, H1345-H1353. https://doi.org/10.1152/ajpheart.00096.2019
- Mattson, D. L. 2014. Infiltrating immune cells in the kidney in salt-sensitive hypertension and renal injury. Am. J. Physiol. Renal Physiol. 307, F499-508. https://doi.org/10.1152/ajprenal.00258.2014
- Hirohama, D., Fujita, T. 2019. Evaluation of the pathophysiological mechanisms of salt-sensitive hypertension. Hypertens. Res. 42, 1848-1857. https://doi.org/10.1038/s41440-019-0332-5
- Lu, X., Crowley, S. D. 2018. Inflammation in salt-sensitive hypertension and renal damage. Curr. Hypertens. Rep. 20, 103. https://doi.org/10.1007/s11906-018-0903-x
- Saritas, T., Kramann, R. 2021. Kidney allograft fibrosis: Diagnostic and therapeutic strategies. Transplantation 105, e114-e130. https://doi.org/10.1097/TP.0000000000003678
- Liu, F., Zhuang, S. 2019. New therapies for the treatment of renal fibrosis. Adv. Exp. Med. Biol. 1165, 625-659. https://doi.org/10.1007/978-981-13-8871-2_31
- Kalantar-Zadeh, K., Jafar, T. H., Nitsch, D., Neuen, B. L., Perkovic, V. 2021. Chronic kidney disease. Lancet 398, 786-802. https://doi.org/10.1016/S0140-6736(21)00519-5
- Molina, P., Gavela, E., Vizcaino, B., Huarte, E., Carrero, J. J. 2021. Optimizing diet to slow CKD progression. Front. Med. (Lausanne) 8, 654250.
- Tchounwou, P. B., Dasari, S., Noubissi, F. K., Ray, P., Kumar, S. 2021. Advances in our understanding of the molecular mechanisms of action of cisplatin in cancer therapy. J. Exp. Pharmacol. 13, 303-328. https://doi.org/10.2147/JEP.S267383
- Brown, A., Kumar, S., Tchounwou, P. B. 2019. Cisplatin-based chemotherapy of human cancers. J. Cancer Sci. Ther. 11, 97.
- Achkar, I. W., Abdulrahman, N., Al-Sulaiti, H., Joseph, J. M., Uddin, S., Mraiche, F. 2018. Cisplatin based therapy: the role of the mitogen activated protein kinase signaling pathway. J. Transl. Med. 16, 96. https://doi.org/10.1186/s12967-018-1471-1
- Dasari, S., Tchounwou, P. B. 2014. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 740, 364-378. https://doi.org/10.1016/j.ejphar.2014.07.025
- McSweeney, K. R., Gadanec, L. K., Qaradakhi, T., Ali, B. A., Zulli A., Apostolopoulos, V. 2021, Mechanisms of cisplatin-induced acute kidney injury: Pathological mechanisms, pharmacological interventions, and genetic mitigations. Cancers (Basel) 13, 1572. https://doi.org/10.3390/cancers13071572
- Xiang, X., Guo, C., Tang, C., Cai, J., Dong, Z. 2019. Epigenetic regulation in kidney toxicity: Insights from cisplatin nephrotoxicity. Semin. Nephrol. 39, 152-158. https://doi.org/10.1016/j.semnephrol.2018.12.005
- Gentilin, E., Simoni, E., Candito, M., Cazzador, D., Astolfi, L. 2019. Cisplatin-induced ototoxicity: Updates on molecular targets. Trends Mol. Med. 25, 1123-1132. https://doi.org/10.1016/j.molmed.2019.08.002
- Hajian, S., Rafieian-Kopaei, M., Nasri, H. 2014. Renoprotective effects of antioxidants against cisplatin nephrotoxicity. J. Nephropharmacol. 3, 39-42.
- Holditch, S. J., Brown, C. N., Lombardi, A. M., Nguyen, K. N., Edelstein, C. L. 2019. Recent advances in models, mechanisms, biomarkers, and interventions in cisplatin-induced acute kidney injury. Int. J. Mol. Sci. 20, 3011. https://doi.org/10.3390/ijms20123011
- Perse, M., Veceric-Haler, Z. 2018. Cisplatin-induced rodent model of kidney injury: Characteristics and challenges. Biomed. Res. Int. 2018, 1462802.
- Taghizadeh, F., Hosseinimehr, S. J., Zargari, M., Karimpour Malekshah, A., Talebpour Amiri, F. B. 2020. Gliclazide attenuates cisplatin-induced nephrotoxicity through inhibiting NF-kappaB and caspase-3 activity. IUBMB Life 72, 2024-2033. https://doi.org/10.1002/iub.2342
- Abdelrahman, A. M., Al Suleimani, Y., Shalaby, A., Ashique, M., Manoj, P., Al-Saadi, H., Ali, B.H. 2019. Effect of levosimendan, a calcium sensitizer, on cisplatin-induced nephrotoxicity in rats. Toxicol. Rep. 6, 232-238. https://doi.org/10.1016/j.toxrep.2019.02.006
- Griffin, B. R., Faubel, S., Edelstein, C. L. 2019. Biomarkers of drug-induced kidney toxicity. Ther. Drug Monit. 41, 213-226. https://doi.org/10.1097/ftd.0000000000000589
- Lin, S., Lin, W., Liao, C., Zhou, T. 2020. Nephroprotective effect of mesenchymal stem cell-based therapy of kidney disease induced by toxicants. Stem Cells Int. 2020, 8819757.
- Wen, Y., Yan, H. R., Wang, B., Liu, B. C. 2021.,Macrophage heterogeneity in kidney injury and fibrosis. Front. Immunol. 12, 681748. https://doi.org/10.3389/fimmu.2021.681748
- Sankhe, R., Kinra, M., Mudgal, J., Arora, D., Nampoothiri, M. 2020 Neprilysin, the kidney brush border neutral proteinase: a possible potential target for ischemic renal injury. Toxicol. Mech. Methods 30, 88-99. https://doi.org/10.1080/15376516.2019.1669246
- Frazier, K. S., Ryan, A. M., Peterson, R. A., Obert, L. A. 2019. Kidney pathology and investigative nephrotoxicology strategies across species. Semin. Nephrol. 39, 190-201. https://doi.org/10.1016/j.semnephrol.2018.12.007
- Dong, Q., Jie, Y., Ma, J., Li, C., Xin, T., Yang, D. 2019. Renal tubular cell death and inflammation response are regulated by the MAPK-ERK-CREB signaling pathway under hypoxia-reoxygenation injury. J Recept. Signal. Transduct. Res. 39, 383-391. https://doi.org/10.1080/10799893.2019.1698050
- Belavgeni, A., Meyer, C., Stumpf, J., Hugo, C., Linkermann, A. 2020. Ferroptosis and necroptosis in the kidney. Cell. Chem. Biol. 27, 448-462. https://doi.org/10.1016/j.chembiol.2020.03.016
- Potocnjak, I., Domitrovic, R. 2016. Carvacrol attenuates acute kidney injury induced by cisplatin through suppression of ERK and PI3K/Akt activation. Food Chem. Toxicol. 98, 251-261. https://doi.org/10.1016/j.fct.2016.11.004
- Brooks, C. R., Bonventre, J. V. 2015. KIM-1/TIM-1 in proximal tubular cell immune response. Oncotarget 6, 44059-44060. https://doi.org/10.18632/oncotarget.6623
- Karmakova, T. A., Sergeeva, N. S., Kanukoev, K. Y., Alekseev, B. Y., Kaprin, A. D. 2021. Kidney injury molecule 1 (KIM-1): a multifunctional glycoprotein and biological marker (Review). Sovrem. Tekhnologii. Med. 13, 64-78.
- Zhao, X. C., Livingston, M. J., Liang, X. L., Dong, Z. 2019. Cell apoptosis and autophagy in renal fibrosis. Adv. Exp. Med. Biol. 1165, 557-584. https://doi.org/10.1007/978-981-13-8871-2_28
- Soetikno, V., Sari, S. D. P., Ul Maknun, L., Sumbung, N. K., Rahmi, D. N. I., Pandhita, B. A. W., Louisa, M., Estuningtyas, A. 2019. Pre-treatment with curcumin ameliorates cisplatin-induced kidney damage by suppressing kidney inflammation and apoptosis in rats. Drug Res. (Stuttg) 69, 75-82. https://doi.org/10.1055/a-0641-5148
- Yang, R., Zhu, S., Tonnessen, T. I. 2016. Ethyl pyruvate is a novel anti-inflammatory agent to treat multiple inflammatory organ injuries. J. Inflamm. (Lond) 3, 13:37. https://doi.org/10.1186/s12950-016-0144-1
- Zhao, Z., Hu, Z., Zeng, R., Yao, Y. 2020. HMGB1 in kidney diseases. Life Sci. 15, 259:118203. https://doi.org/10.1016/j.lfs.2020.118203
- Chen, Q., Guan, X., Zuo, X., Wang, J., Yin, W. 2016. The role of high mobility group box 1 (HMGB1) in the pathogenesis of kidney diseases. Acta. Pharm. Sin. B. 6, 183-188. https://doi.org/10.1016/j.apsb.2016.02.004
- Mehaffey, E., Majid, D. S. A. 2017. Tumor necrosis factor-alpha, kidney function, and hypertension. Am. J. Physiol. Renal Physiol. 313, F1005-F1008. https://doi.org/10.1152/ajprenal.00535.2016
- Basu, S. 2007. Novel cyclooxygenase-catalyzed bioactive prostaglandin F2 alpha from physiology to new principles in inflammation. Med. Res. Rev. 27, 435-468. https://doi.org/10.1002/med.20098